Previous studies have confirmed that intervertebral disc degeneration(IDD)is closely associated with inflammation-induced reactive oxygen species(ROS)and resultant cell mitochondrial membrane potential(MMP)decline.Cle...Previous studies have confirmed that intervertebral disc degeneration(IDD)is closely associated with inflammation-induced reactive oxygen species(ROS)and resultant cell mitochondrial membrane potential(MMP)decline.Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline.Additionally,re-energizing the mitochondria damaged in the inflammatory milieu to restore their function,is equally important.Herein,we proposed an interesting concept of mitochondrion-engine equipped with coolant,which enables first to“cool-down”the inflammatory environment,next to restore the MMP,finally to allow cells to regain normal energy metabolism through materials design.As such,we developed a multifunctional composite composed of a reactive oxygen species(ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane(TPU)scaffold.The TPU scaffold was coated with conductive polypyrrole(PPy)to electrophoretically deposit L-arginine,which could upregulate the Mammalian target of rapamycin(mTOR)pathway,thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair.While the ROS-responsive hydrogel acting as the“mito-engine coolant”could scavenge the excessive ROS to create a favorable environment for IVD cells recovery.Demonstrated by in vitro and in vivo evaluations,the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress.Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair.This unique bioinspired design integrated biomaterial science with mitochondrial biology,presents a promising paradigm for IDD treatment.展开更多
BACKGROUND Conservative treatments have been reported to diminish or resolve clinical symptoms of lumbar intervertebral disc herniation(LIDH)within a few weeks.CASE SUMMARY Computed tomography and magnetic resonance i...BACKGROUND Conservative treatments have been reported to diminish or resolve clinical symptoms of lumbar intervertebral disc herniation(LIDH)within a few weeks.CASE SUMMARY Computed tomography and magnetic resonance imaging(MRI)of the lumbar region of a 25-yearold male diagnosed with LIDH showed prolapse of the L5/S2 disc.The disc extended 1.0 cm beyond the vertebral edge and hung along the posterior vertebral edge.The patient elected a conservative treatment regimen that included traditional Chinese medicine(TCM),acupuncture,and massage.During a follow-up period of more than 12 mo,good improvement in pain was reported without complications.MRI of the lumbar region after 12 mo showed obvious reabsorption of the herniation.CONCLUSION A conservative treatment regimen of TCM,acupuncture,and massage promoted reabsorption of a prolapsed disc.展开更多
Intervertebral disc(ID)degeneration(IDD)is one of the main causes of chronic low back pain,and degenerative lesions are usually caused by an imbalance between catabolic and anabolic processes in the ID.The environment...Intervertebral disc(ID)degeneration(IDD)is one of the main causes of chronic low back pain,and degenerative lesions are usually caused by an imbalance between catabolic and anabolic processes in the ID.The environment in which the ID is located is harsh,with almost no vascular distribution within the disc,and the nutrient supply relies mainly on the diffusion of oxygen and nutrients from the blood vessels located under the endplate.The stability of its internal environment also plays an important role in preventing IDD.The main feature of disc degeneration is a decrease in the number of cells.Mesenchymal stem cells have been used in the treatment of disc lesions due to their ability to differentiate into nucleus pulposus cells in a nonspecific anti-inflammatory manner.The main purpose is to promote their regeneration.The current aim of stem cell therapy is to replace the aged and metamorphosed cells in the ID and to increase the content of the extracellular matrix.The treatment of disc degeneration with stem cells has achieved good efficacy,and the current challenge is how to improve this efficacy.Here,we reviewed current treatments for disc degeneration and summarize studies on stem cell vesicles,enhancement of therapeutic effects when stem cells are mixed with related substances,and improvements in the efficacy of stem cell therapy by adjuvants under adverse conditions.We reviewed the new approaches and ideas for stem cell treatment of disc degeneration in order to contribute to the development of new therapeutic approaches to meet current challenges.展开更多
Objective To observe the influence of acupuncture on the post-operative rehabilitation in patients undergoing vertebral pulp extraction due to lumbar intervertebral disc protrusion (LIDP) so as to evaluate its effic...Objective To observe the influence of acupuncture on the post-operative rehabilitation in patients undergoing vertebral pulp extraction due to lumbar intervertebral disc protrusion (LIDP) so as to evaluate its efficacy in the treatment of lumbago induced by LIDP. Methods A total of 69 patients undergoing vertebral pulp extraction were randomized into acupuncture group ( n = 35) and control group ( n = 34). Patients of acupuncture group were treated with routine rehabilitation method and electroacupuncture (EA) stimulation on Zhìbiān (秩边 BL54) and Wěizhōng (委中 BL40), acupuncture on Shènshū ( 肾俞 BL23), Dàchángshū (大肠俞 BL25), BL54, BL40, Jiájǐ (夹脊 EX-B 2), Shàngliáo (上髎 BL31), etc., and cupping on BL40, with 15 days being a therapeutic course and for average 7. 36 courses. Patients of control group were treated with simple rehabilitation method. Functional recovery state was judged before and after surgery by using the standards of Japanese Orthopedic Association (JOA). Results The average recovery rates of 3 months, 6 months and one year after surgery were 49.93% ,90.31% and 95.08% separately in acupuncture group, and 26.24% ,63.42% and 71.36% successively in control group. The recovery rates of acupuncture group were significantly higher than those of control group at the same time-points (P〈0. 05). Conclusion Acupuncture has a definite effect on promoting post-operative functional recovery in LIDP patients undergoing vertebral pulp extraction and spinal fusion.展开更多
Most studies on spinal cord neuronal injury have focused on spinal cord tissue histology and the expression of nerve cell damage and repair-related genes. The importance of the microcirculation is often ignored in spi...Most studies on spinal cord neuronal injury have focused on spinal cord tissue histology and the expression of nerve cell damage and repair-related genes. The importance of the microcirculation is often ignored in spinal cord injury and repair research. Therefore, in this study, we established a rat model of intervertebral disc extrusion by inserting a silica gel pad into the left ventral sur-face of T13. Electroacupuncture was used to stimulate the bilateralZusanlipoint (ST36) and Neiting point (ST44) for 14 days. Compared with control animals, blood lfow in the ifrst lumbar vertebra (L1) was noticeably increased in rats given electroacupuncture. Microvessel density in the T13 segment of the spinal cord was increased significantly as well. The number of normal neurons was higher in the ventral horn of the spinal cord. In addition, vacuolation in the white matter was lessened. No obvious glial cell proliferation was visible. Furthermore, hindlimb motor function was improved signiifcantly. Collectively, our results suggest that electroacupuncture can improve neuronal morphology and microcirculation, and promote the recovery of neurological functions in a rat model of intervertebral disc extrusion.展开更多
Intervertebral disc (IVD) degeneration is the leading cause of disability with no disease-modifying treatment. IVD degeneration is associated with instable mechanical loading in the spine, but little is known about ...Intervertebral disc (IVD) degeneration is the leading cause of disability with no disease-modifying treatment. IVD degeneration is associated with instable mechanical loading in the spine, but little is known about how mechanical stress regulates nucleus notochordal (NC) cells to maintain IVD homeostasis. Here we report that mechanical stress can result in excessive integrin αvβ6-mediated activation of transforming growth factor beta (TGFβ), decreased NC cell vacuoles, and increased matrix proteoglycan production, and results in degenerative disc disease (DDD). Knockout of TGFβ type II receptor (TβRII) or integrin αv in the NC cells inhibited functional activity of postnatal NC cells and also resulted in DDD under mechanical loading. Administration of RGD peptide, TGFβ, and αvβ6-neutralizing antibodies attenuated IVD degeneration. Thus, integrin-mediated activation of TGFβ plays a critical role in mechanical signaling transduction to regulate IVD cell function and homeostasis. Manipulation of this signaling pathway may be a potential therapeutic target to modify DDD.展开更多
Intervertebral disc(IVD)degenerative diseases are a common problem in the world,and they cause substantial social and economic burdens for people.The current methods for treating IVD degenerative diseases mainly inclu...Intervertebral disc(IVD)degenerative diseases are a common problem in the world,and they cause substantial social and economic burdens for people.The current methods for treating IVD degenerative diseases mainly include surgery and conservative treatment,which cannot fundamentally restore the normal structure of the disc.With continuous research on the mechanism of degeneration and the development of regenerative medicine,rapid progress has been made in the field of regenerative medicine regarding the use of stem cell-derived exosomes,which are active biological substances used in intercellular communication,because they show a strong effect in promoting tissue regeneration.The study of exosomes in the field of IVD degeneration has just begun,and many surprising achievements have been made.This paper mainly reviews the biological characteristics of exosomes and highlights the current status of exosomes in the field of IVD degeneration,as well as future developments regarding exosomes.展开更多
Objective: To assess the effects of axial vibrations on gene expression and lumbar intervertebral disc degeneration in vivo. Methods: A modified bipedal rat model was established using a brachial plexus rhizotomy appr...Objective: To assess the effects of axial vibrations on gene expression and lumbar intervertebral disc degeneration in vivo. Methods: A modified bipedal rat model was established using a brachial plexus rhizotomy approach to imitate human upright posture. The experimental animals were randomly divided into three groups: control, vertical vibration, and whole-body vibration. Gene expression in degeneration of the intervertebral discs was assessed by reverse transcription-quantitative polymerase chain reaction. Results: The expression of aggrecan, Col1α1, Col2α1, and decorin were shown to be up-regulated in 14-week-old rats in the vertical vibration and whole-body vibration groups, whereas biglycan and versican expression was down-regulated in 14-week-old rats of the two experimental groups. Furthermore, biglycan and versican expression levels were shown to be lower in the whole-body vibration group than in the vertical vibration group(P<0.05). Conclusions: This in-vivo study demonstrated that vibrations can influence the expression of anabolic genes. Furthermore, whole-body vibrations seem to have a greater effect in this regard than vertical vibrations. A new method is expected to relieve the low back pain of the patients through our research.展开更多
Karacoline is a compound found in the plant Aconitum kusnezoffii Reichb.Although Aconitum kusnezoffii Reichb is widely used for the treatment of pain,very few studies have been carried out on the use of karacoline due...Karacoline is a compound found in the plant Aconitum kusnezoffii Reichb.Although Aconitum kusnezoffii Reichb is widely used for the treatment of pain,very few studies have been carried out on the use of karacoline due to its potential toxicity.In this study,we selected key matrix metalloproteinases(MMPs),collagen II,and aggrecan as targets due to their association with intervertebral disc degeneration(IDD).Using these targets,we then used network pharmacology to predict a series of molecules that might exert therapeutic effects on IDD.Of these molecules,karacoline was predicted to have the best effect.Tumor necrosis factor(TNF)-a is known to promote the degeneration of the extracellular matrix in IDD.We therefore applied different concentrations of karacoline(0,1.25,or 12.88 mM)along with 100 ng/mL TNF-a to rat nucleus pulposus cells and found that karacoline reduced the expression of MMP-14 in IDD by inhibiting the nuclear factor(NF)-κB pathway,while collagen II and aggrecan expression was increased.This suggested that extracellular matrix degradation was inhibited by karacoline(P<0.05).Our data therefore reveal a new clinical application of karacoline and provide support for the use of network pharmacology in predicting novel drugs.展开更多
ObjectiveTo investigate the gene expression changes in normal and degeneration lumbar intervertebral disc in humans, providing information for clinical. MethodsThe PCR products of 4096 human genes were spotted onto a ...ObjectiveTo investigate the gene expression changes in normal and degeneration lumbar intervertebral disc in humans, providing information for clinical. MethodsThe PCR products of 4096 human genes were spotted onto a kind of chemical-material-coated-glass slides. The total RNAs were isolated from the tissues. Both the mRNAs from the degeneration and normal lumbar intervertebral disc in humans were reversely transcribed to the cDNAs, which used as the hybridization probes with the incorporations of fluorescent dUTP. The mixed probes were then hybridized to the cDNA microarray. After high-stringent washing, the cDNA microarray was scanned for the fluorescent signals and analyzed with computer image analysis. ResultsAmong the 4096 targets, there were 706 genes whose expression levels differed between the degeneration and normal lumbar intervertebral disc in all cases, comprising 298 up-regulated and 358 down-regulated ones. ConclusionDNA microarray technology is an effective technique in screening for differently expressed genes between the degeneration and normal lumbar intervertebral disc. Cell apoptosis plays an important role in the process of lumbar intervertebral disc degeneration.展开更多
Lower back pain is a leading cause of disability and is one of the reasons for the substantial socioeconomic burden.The etiology of intervertebral disc(IVD)degeneration is complicated,and its mechanism is still not co...Lower back pain is a leading cause of disability and is one of the reasons for the substantial socioeconomic burden.The etiology of intervertebral disc(IVD)degeneration is complicated,and its mechanism is still not completely understood.Factors such as aging,systemic inflammation,biochemical mediators,toxic environmental factors,physical injuries,and genetic factors are involved in the progression of its pathophysiology.Currently,no therapy for restoring degenerated IVD is available except pain management,reduced physical activities,and surgical intervention.Therefore,it is imperative to establish regenerative medicine-based approaches to heal and repair the injured disc,repopulate the cell types to retain water content,synthesize extracellular matrix,and strengthen the disc to restore normal spine flexion.Cellular therapy has gained attention for IVD management as an alternative therapeutic option.In this review,we present an overview of the anatomical and molecular structure and the surrounding pathophysiology of the IVD.Modern therapeutic approaches,including proteins and growth factors,cellular and gene therapy,and cell fate regulators are reviewed.Similarly,small molecules that modulate the fate of stem cells for their differentiation into chondrocytes and notochordal cell types are highlighted.展开更多
Objective: To explore the survival and migration of bone mesenchymal stem cells transplantated in intervertebral disc of rabbits and expression of the exogenic genes. Methods. Thirty-two rabbits were used, A randomiz...Objective: To explore the survival and migration of bone mesenchymal stem cells transplantated in intervertebral disc of rabbits and expression of the exogenic genes. Methods. Thirty-two rabbits were used, A randomized block design was used and discs in the same rabbit were one block,the lumbar discs from L2-3 to L5-6 were randomly divided into blank group, saline group, cell transplantation group Ⅰand cell transplantation group Ⅱ. The fluorescence microscopy was used to determine the fluorescence of the maker protein GFP and DNA-PCR was used to analyze the copies of DNA of neomycin-resistant gene at 1, 3, 6, months after transplantation. Results: There was fluorescence in cell transplantation group Ⅰ and Ⅱ and none in blank group, saline group at 1, 3, 6 months after transplantation. In cell transplantation groups,the fluorescent distribution was more scatter with time, but no significant difference between cell groups Ⅰ and Ⅱ. The test of neomycin resistant gene expressed in cell transplantation group Ⅰ and Ⅱ and quantitative analysis showed that there was no significant difference between the cell groups Ⅰ and Ⅱ (P〉0.05). Conclusion: The transplanted bone mesenchymal stem cells can survive, migrate and the transfer genes can express efficiently, it suggests that the BMSC therapy may be effective to prevent and treat intervertebral disc degeneration.展开更多
KLD-12 peptide with a sequence of AcN-KLDLKLDLKLDL-CNH2 was synthesized and its biocompatibility was assessed in animals. Rabbit MSCs were cultured in the hydrogel for 2 weeks. Live cells were counted by using Calcein...KLD-12 peptide with a sequence of AcN-KLDLKLDLKLDL-CNH2 was synthesized and its biocompatibility was assessed in animals. Rabbit MSCs were cultured in the hydrogel for 2 weeks. Live cells were counted by using Calcein-AM/P1 fluorescence staining. MTT was employed to assess the viability of MSCs cultured in KLD-12 peptide solution of 0.01%, 0.03%, and 0.05%. Hemolysis test, skin irritation test and implantation test were conducted to evaluate its biocompatibility with host tissues. Our results demonstrated that the MSCs in hydrogel grew well and maintained round shape. Cell survival rate was 92.15% (mean: 92.15%±1.17%) at the 7th day and there was no difference in survival rate between day 7 and day 14. Cell proliferation test showed that the A value of the KLD-12 solutions was not significantly different from that of control groups (complete culture media) (P〉0.05) at the 24th and 48th h. The hemolysis rate of KLD-12 solution was 0.112%. Skin irritation test showed that the skin injected with KLD-12 solution remained normal and the score of skin irritation was 0. The histological examination with HE staining exhibited that the skin layers were clear and there was no infiltration with neutrophilic granulocytes and lymphocytes. It is concluded that KLD-12 peptide hydrogel bad a good biocompatibility with host rabbit and MSCs, and KLD-12 pep- tide hydrogel can provide an appropriate microenvironment for MSCs.展开更多
BACKGROUND Intervertebral disc degeneration(IVDD)is the leading cause of lower back pain.Disc degeneration is characterized by reduced cellularity and decreased production of extracellular matrix(ECM).Mesenchymal stem...BACKGROUND Intervertebral disc degeneration(IVDD)is the leading cause of lower back pain.Disc degeneration is characterized by reduced cellularity and decreased production of extracellular matrix(ECM).Mesenchymal stem cells(MSCs)have been envisioned as a promising treatment for degenerative illnesses.Cell-based therapy using ECM-producing chondrogenic derivatives of MSCs has the potential to restore the functionality of the intervertebral disc(IVD).AIM To investigate the potential of chondrogenic transcription factors to promote differentiation of human umbilical cord MSCs into chondrocytes,and to assess their therapeutic potential in IVD regeneration.METHODS MSCs were isolated and characterized morphologically and immunologically by the expression of specific markers.MSCs were then transfected with Sox-9 and Six-1 transcription factors to direct differentiation and were assessed for chondrogenic lineage based on the expression of specific markers.These differentiated MSCs were implanted in the rat model of IVDD.The regenerative potential of transplanted cells was investigated using histochemical and molecular analyses of IVDs.RESULTS Isolated cells showed fibroblast-like morphology and expressed CD105,CD90,CD73,CD29,and Vimentin but not CD45 antigens.Overexpression of Sox-9 and Six-1 greatly enhanced the gene expression of transforming growth factor beta-1 gene,BMP,Sox-9,Six-1,and Aggrecan,and protein expression of Sox-9 and Six-1.The implanted cells integrated,survived,and homed in the degenerated intervertebral disc.Histological grading showed that the transfected MSCs regenerated the IVD and restored normal architecture.CONCLUSION Genetically modified MSCs accelerate cartilage regeneration,providing a unique opportunity and impetus for stem cell-based therapeutic approach for degenerative disc diseases.展开更多
Clinical studies have found that patients withcervical degenerative disease are usually accompanied by dizziness.Anterior cervical surgery can eliminate not only chronic neck pain,cervical radiculopathy or myelopathy,...Clinical studies have found that patients withcervical degenerative disease are usually accompanied by dizziness.Anterior cervical surgery can eliminate not only chronic neck pain,cervical radiculopathy or myelopathy,but also dizziness.Immunohistochemical studies show that a large number of mechanoreceptors,especially Ruffini corpuscles,are present in degenerated cervical discs.The available evidence suggests a key role of Ruffini corpuscles in the pathogenesis of dizziness caused by cervical degenerative disease(i.e.cervical discogenic dizziness).Disc degeneration is characterized by an elevation of inflammatory cytokines,which stimulates the mechanoreceptors in degenerated discs and results in peripheral sensitization.Abnormal cervical proprioceptive inputs from the mechanoreceptors are transmitted to the central nervous system,resulting in sensory mismatches with vestibular and visual information and leads to dizziness.In addition,neck pain caused by cervical disc degeneration can play a key role in cervical discogenic dizziness by increasing the sensitivity of muscle spindles.Like cervical discogenic pain,the diagnosis of cervical discogenic dizziness can be challenging and can be made only after other potential causes of dizziness have been ruled out.Conservative treatment is effective for the majority of patients.Existing basic and clinical studies have shown that cervical intervertebral disc degeneration can lead to dizziness.展开更多
This study examined the correlation between osteoporosis and the degeneration of intervertebral discs. Sprague-Dawley rats were maintained up to 22 or 28 months. The femoral bone, tibial bone and lumbar vertebra were ...This study examined the correlation between osteoporosis and the degeneration of intervertebral discs. Sprague-Dawley rats were maintained up to 22 or 28 months. The femoral bone, tibial bone and lumbar vertebra were histologically studied and the expression of collagen type Ⅱ and Ⅹ in intervertebral discs was immunohistochemiscally determined. Several indices for the degeneration of intervertebral discs and osteoporosis and the correlation among them were then analyzed. Close correlations were found among the indices for the degeneration of intervertebral discs, including the relative area of the vascular bud, the ratio of the uncalcified and the calcified layers, the expression of collagen type Ⅱ and Ⅹ. The correlation with collagen type Ⅹ was negative. There existed positive correlations among the indices for osteoporosis, including the thickness ratio of cortical bone, the relative area of bone trabecula, the density of femoral and vertebral body bones, and the maximum stress and strain on bone. Analysis on the relationship of osteoporosis and the disease on disc showed that the indices of osteoporosis were negatively correlated with the indices of the degeneration of intervertebral discs but the expression of collagen type Ⅹ was positively correlated, with the density of vertebral body bones having the strongest dependence on collagen type Ⅹ. The maximum stress and strain bore no correlation with the degeneration of intervertebral discs. These results suggest that osteoporosis was negatively correlated with the degeneration of intervertebral discs.展开更多
Objective: To investigate epidural fat distribution patterns in patients with lumbar intervertebral disc protrusion. Methods: Medical records were selected randomly from 30 patients whose diagnoses were consistent w...Objective: To investigate epidural fat distribution patterns in patients with lumbar intervertebral disc protrusion. Methods: Medical records were selected randomly from 30 patients whose diagnoses were consistent with the inclusion criteria of the study. Thickness of bilateral fat, the longest length of posterior fat, thickness of bilateral yellow ligament and the hernial distance of lumbar discs were measured by MRI at L3/L4, L4/L5 and L5/S 1 levels. According to clinical symptoms of lumbar intervertebral disc protrusion, the patients were divided into two groups at all space levels. All data were analyzed by statistical software. Results: The longest length of posterior epidural fat at the symptomatic levels was shorter than that at the non-symptomatic levels in each disc space. The symptomatic levels had no effect on the whole thickness of the lateral fat and lateral yellow ligaments. Conclusion: Epidural fat distribution in patients with lumbar intcrvertebral disc protrusion is different from that in normal adults. It is affected by the hernial distance of lumbar discs. The diagnostic criteria for spinal epidural lipomatosis in normal adults may therefore prove to be inappropriate for patients with lumbar intervertebral disc protrusion.展开更多
Objective: To observe the therapeutic effect of traction combined with acupuncture on lumbar intervertebral disc herniation (LIDH). Methods:Eighty-three patients diagnosed as LIDH were randomly divided into treatment ...Objective: To observe the therapeutic effect of traction combined with acupuncture on lumbar intervertebral disc herniation (LIDH). Methods:Eighty-three patients diagnosed as LIDH were randomly divided into treatment group (n=42)and control group (n=41). In the treatment group, besides lumbar traction, electroacupuncture at Jiaji (EX-B 2, L 3~5), Shenshu (BL 23), Qihai (CV 6), Mingmen (GV 4), Huantiao (GB 30), Chengshan (BL 57) and Yanglingquan (GB 34) was added. In the control group, only lumbar traction was applied. Results: In treatment group, the cure plus markedly effective rate was 80.95% with a total effective rate of 92.86%, while in control group, it was 39.02% with a total effective rate of 80.48%. The therapeutic effect in the treatment group was obviously better than that in the control group (P<0.001). Conclusion: Lumbar traction plus EA can effectively alleviate or even eliminate clinical symptoms and signs of lumbar intervertebral disc herniation.展开更多
<strong>Objective:</strong> To describe the relationship between autophagy and apoptosis and the possible signaling pathways involved in degenerative lumbar intervertebral disc. <strong>Summary of Ba...<strong>Objective:</strong> To describe the relationship between autophagy and apoptosis and the possible signaling pathways involved in degenerative lumbar intervertebral disc. <strong>Summary of Background Data:</strong> Autophagy and apoptosis are regulatory cellular mechanisms that determine many pathologies, including degenerative intervertebral disc disease. The interactions between these events in the damage or protection of intervertebral disc cells and in cellular homeostasis remain controversial. <strong>Methods:</strong> The sample size was twenty patients who underwent lumbar spine surgery for symptomatic disc herniation or spondylolisthesis. Intervertebral discs were classified by magnetic resonance as Pfirrmann grade IV and grade V. Six patients were operated on two levels, resulting in twenty-six intervertebral discs that were submitted to immunohistochemistry to verify the protein expression of autophagy and apoptosis markers. <strong>Results: </strong>The autophagic markers had greater protein expression in the human intervertebral disc (Pfirrmann Grades IV and V). Under these conditions, autophagy and apoptosis showed a negative correlation. Regarding apoptosis, caspase 8 presented the highest protein expression, which allows inferring the preference for the extrinsic pathway in cell death. <strong>Conclusions: </strong>Autophagy had the greatest protein expression negative profile compared to apoptosis. Caspase 8 had the highest protein expression in apoptosis.展开更多
基金the National Natural Science Foundation of China(82172495,82260431,82072434,82372453)Project funded by China Postdoctoral Science Foundation(2023M732469)+2 种基金Sichuan University Postdoctoral Interdisciplinary Innovation Fund(JCXK2205)Projects of the Science and Technology Department of Sichuan Province(2022ZDZX0029,MZGC20230019)the 1⋅3⋅5 project for disciplines of excellence Clinical Research Incubation Project,West China Hospital,Sichuan University(2021HXFH003).
文摘Previous studies have confirmed that intervertebral disc degeneration(IDD)is closely associated with inflammation-induced reactive oxygen species(ROS)and resultant cell mitochondrial membrane potential(MMP)decline.Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline.Additionally,re-energizing the mitochondria damaged in the inflammatory milieu to restore their function,is equally important.Herein,we proposed an interesting concept of mitochondrion-engine equipped with coolant,which enables first to“cool-down”the inflammatory environment,next to restore the MMP,finally to allow cells to regain normal energy metabolism through materials design.As such,we developed a multifunctional composite composed of a reactive oxygen species(ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane(TPU)scaffold.The TPU scaffold was coated with conductive polypyrrole(PPy)to electrophoretically deposit L-arginine,which could upregulate the Mammalian target of rapamycin(mTOR)pathway,thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair.While the ROS-responsive hydrogel acting as the“mito-engine coolant”could scavenge the excessive ROS to create a favorable environment for IVD cells recovery.Demonstrated by in vitro and in vivo evaluations,the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress.Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair.This unique bioinspired design integrated biomaterial science with mitochondrial biology,presents a promising paradigm for IDD treatment.
基金Supported by National Nature Science Foundation of China,No.82004495Natural Science Foundation of Shandong Province,China,No.ZR2020QH318+1 种基金The 69th batch of a grant from China Postdoctoral Foundation,No.2021M691985Taishan Scholars Young Experts Program,China,No.tsqn202211349.
文摘BACKGROUND Conservative treatments have been reported to diminish or resolve clinical symptoms of lumbar intervertebral disc herniation(LIDH)within a few weeks.CASE SUMMARY Computed tomography and magnetic resonance imaging(MRI)of the lumbar region of a 25-yearold male diagnosed with LIDH showed prolapse of the L5/S2 disc.The disc extended 1.0 cm beyond the vertebral edge and hung along the posterior vertebral edge.The patient elected a conservative treatment regimen that included traditional Chinese medicine(TCM),acupuncture,and massage.During a follow-up period of more than 12 mo,good improvement in pain was reported without complications.MRI of the lumbar region after 12 mo showed obvious reabsorption of the herniation.CONCLUSION A conservative treatment regimen of TCM,acupuncture,and massage promoted reabsorption of a prolapsed disc.
基金National Natural Science Foundation of China,No.82202766Natural Science Foundation of Hubei Province of China,No.2022CFB686+1 种基金Science Foundation of Union Hospital,No.2021xhyn102Scientific Research Training Program for Young Talents in Union Hospital,Tongji Medical College,Huazhong University of Science and Technology,China.
文摘Intervertebral disc(ID)degeneration(IDD)is one of the main causes of chronic low back pain,and degenerative lesions are usually caused by an imbalance between catabolic and anabolic processes in the ID.The environment in which the ID is located is harsh,with almost no vascular distribution within the disc,and the nutrient supply relies mainly on the diffusion of oxygen and nutrients from the blood vessels located under the endplate.The stability of its internal environment also plays an important role in preventing IDD.The main feature of disc degeneration is a decrease in the number of cells.Mesenchymal stem cells have been used in the treatment of disc lesions due to their ability to differentiate into nucleus pulposus cells in a nonspecific anti-inflammatory manner.The main purpose is to promote their regeneration.The current aim of stem cell therapy is to replace the aged and metamorphosed cells in the ID and to increase the content of the extracellular matrix.The treatment of disc degeneration with stem cells has achieved good efficacy,and the current challenge is how to improve this efficacy.Here,we reviewed current treatments for disc degeneration and summarize studies on stem cell vesicles,enhancement of therapeutic effects when stem cells are mixed with related substances,and improvements in the efficacy of stem cell therapy by adjuvants under adverse conditions.We reviewed the new approaches and ideas for stem cell treatment of disc degeneration in order to contribute to the development of new therapeutic approaches to meet current challenges.
文摘Objective To observe the influence of acupuncture on the post-operative rehabilitation in patients undergoing vertebral pulp extraction due to lumbar intervertebral disc protrusion (LIDP) so as to evaluate its efficacy in the treatment of lumbago induced by LIDP. Methods A total of 69 patients undergoing vertebral pulp extraction were randomized into acupuncture group ( n = 35) and control group ( n = 34). Patients of acupuncture group were treated with routine rehabilitation method and electroacupuncture (EA) stimulation on Zhìbiān (秩边 BL54) and Wěizhōng (委中 BL40), acupuncture on Shènshū ( 肾俞 BL23), Dàchángshū (大肠俞 BL25), BL54, BL40, Jiájǐ (夹脊 EX-B 2), Shàngliáo (上髎 BL31), etc., and cupping on BL40, with 15 days being a therapeutic course and for average 7. 36 courses. Patients of control group were treated with simple rehabilitation method. Functional recovery state was judged before and after surgery by using the standards of Japanese Orthopedic Association (JOA). Results The average recovery rates of 3 months, 6 months and one year after surgery were 49.93% ,90.31% and 95.08% separately in acupuncture group, and 26.24% ,63.42% and 71.36% successively in control group. The recovery rates of acupuncture group were significantly higher than those of control group at the same time-points (P〈0. 05). Conclusion Acupuncture has a definite effect on promoting post-operative functional recovery in LIDP patients undergoing vertebral pulp extraction and spinal fusion.
基金supported by the National Natural Science Foundation of China,No.31372473,30871886the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality of China,No.PHR201107134the 2012 Scientific Research Quality Raising Funds of Beijing University of Agriculture of China,No.PXM2012_014207_000010
文摘Most studies on spinal cord neuronal injury have focused on spinal cord tissue histology and the expression of nerve cell damage and repair-related genes. The importance of the microcirculation is often ignored in spinal cord injury and repair research. Therefore, in this study, we established a rat model of intervertebral disc extrusion by inserting a silica gel pad into the left ventral sur-face of T13. Electroacupuncture was used to stimulate the bilateralZusanlipoint (ST36) and Neiting point (ST44) for 14 days. Compared with control animals, blood lfow in the ifrst lumbar vertebra (L1) was noticeably increased in rats given electroacupuncture. Microvessel density in the T13 segment of the spinal cord was increased significantly as well. The number of normal neurons was higher in the ventral horn of the spinal cord. In addition, vacuolation in the white matter was lessened. No obvious glial cell proliferation was visible. Furthermore, hindlimb motor function was improved signiifcantly. Collectively, our results suggest that electroacupuncture can improve neuronal morphology and microcirculation, and promote the recovery of neurological functions in a rat model of intervertebral disc extrusion.
文摘Intervertebral disc (IVD) degeneration is the leading cause of disability with no disease-modifying treatment. IVD degeneration is associated with instable mechanical loading in the spine, but little is known about how mechanical stress regulates nucleus notochordal (NC) cells to maintain IVD homeostasis. Here we report that mechanical stress can result in excessive integrin αvβ6-mediated activation of transforming growth factor beta (TGFβ), decreased NC cell vacuoles, and increased matrix proteoglycan production, and results in degenerative disc disease (DDD). Knockout of TGFβ type II receptor (TβRII) or integrin αv in the NC cells inhibited functional activity of postnatal NC cells and also resulted in DDD under mechanical loading. Administration of RGD peptide, TGFβ, and αvβ6-neutralizing antibodies attenuated IVD degeneration. Thus, integrin-mediated activation of TGFβ plays a critical role in mechanical signaling transduction to regulate IVD cell function and homeostasis. Manipulation of this signaling pathway may be a potential therapeutic target to modify DDD.
文摘Intervertebral disc(IVD)degenerative diseases are a common problem in the world,and they cause substantial social and economic burdens for people.The current methods for treating IVD degenerative diseases mainly include surgery and conservative treatment,which cannot fundamentally restore the normal structure of the disc.With continuous research on the mechanism of degeneration and the development of regenerative medicine,rapid progress has been made in the field of regenerative medicine regarding the use of stem cell-derived exosomes,which are active biological substances used in intercellular communication,because they show a strong effect in promoting tissue regeneration.The study of exosomes in the field of IVD degeneration has just begun,and many surprising achievements have been made.This paper mainly reviews the biological characteristics of exosomes and highlights the current status of exosomes in the field of IVD degeneration,as well as future developments regarding exosomes.
基金supported by the National Natural Science Foundation of China(Grant No.81401768,81301646)the Natural Science Foundation of Jiangsu Province(Grant No.BK20140289)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20123201120018)China Postdoctoral Science Foundation on the 53rd general program(Grant No.2013M531404)
文摘Objective: To assess the effects of axial vibrations on gene expression and lumbar intervertebral disc degeneration in vivo. Methods: A modified bipedal rat model was established using a brachial plexus rhizotomy approach to imitate human upright posture. The experimental animals were randomly divided into three groups: control, vertical vibration, and whole-body vibration. Gene expression in degeneration of the intervertebral discs was assessed by reverse transcription-quantitative polymerase chain reaction. Results: The expression of aggrecan, Col1α1, Col2α1, and decorin were shown to be up-regulated in 14-week-old rats in the vertical vibration and whole-body vibration groups, whereas biglycan and versican expression was down-regulated in 14-week-old rats of the two experimental groups. Furthermore, biglycan and versican expression levels were shown to be lower in the whole-body vibration group than in the vertical vibration group(P<0.05). Conclusions: This in-vivo study demonstrated that vibrations can influence the expression of anabolic genes. Furthermore, whole-body vibrations seem to have a greater effect in this regard than vertical vibrations. A new method is expected to relieve the low back pain of the patients through our research.
文摘Karacoline is a compound found in the plant Aconitum kusnezoffii Reichb.Although Aconitum kusnezoffii Reichb is widely used for the treatment of pain,very few studies have been carried out on the use of karacoline due to its potential toxicity.In this study,we selected key matrix metalloproteinases(MMPs),collagen II,and aggrecan as targets due to their association with intervertebral disc degeneration(IDD).Using these targets,we then used network pharmacology to predict a series of molecules that might exert therapeutic effects on IDD.Of these molecules,karacoline was predicted to have the best effect.Tumor necrosis factor(TNF)-a is known to promote the degeneration of the extracellular matrix in IDD.We therefore applied different concentrations of karacoline(0,1.25,or 12.88 mM)along with 100 ng/mL TNF-a to rat nucleus pulposus cells and found that karacoline reduced the expression of MMP-14 in IDD by inhibiting the nuclear factor(NF)-κB pathway,while collagen II and aggrecan expression was increased.This suggested that extracellular matrix degradation was inhibited by karacoline(P<0.05).Our data therefore reveal a new clinical application of karacoline and provide support for the use of network pharmacology in predicting novel drugs.
文摘ObjectiveTo investigate the gene expression changes in normal and degeneration lumbar intervertebral disc in humans, providing information for clinical. MethodsThe PCR products of 4096 human genes were spotted onto a kind of chemical-material-coated-glass slides. The total RNAs were isolated from the tissues. Both the mRNAs from the degeneration and normal lumbar intervertebral disc in humans were reversely transcribed to the cDNAs, which used as the hybridization probes with the incorporations of fluorescent dUTP. The mixed probes were then hybridized to the cDNA microarray. After high-stringent washing, the cDNA microarray was scanned for the fluorescent signals and analyzed with computer image analysis. ResultsAmong the 4096 targets, there were 706 genes whose expression levels differed between the degeneration and normal lumbar intervertebral disc in all cases, comprising 298 up-regulated and 358 down-regulated ones. ConclusionDNA microarray technology is an effective technique in screening for differently expressed genes between the degeneration and normal lumbar intervertebral disc. Cell apoptosis plays an important role in the process of lumbar intervertebral disc degeneration.
文摘Lower back pain is a leading cause of disability and is one of the reasons for the substantial socioeconomic burden.The etiology of intervertebral disc(IVD)degeneration is complicated,and its mechanism is still not completely understood.Factors such as aging,systemic inflammation,biochemical mediators,toxic environmental factors,physical injuries,and genetic factors are involved in the progression of its pathophysiology.Currently,no therapy for restoring degenerated IVD is available except pain management,reduced physical activities,and surgical intervention.Therefore,it is imperative to establish regenerative medicine-based approaches to heal and repair the injured disc,repopulate the cell types to retain water content,synthesize extracellular matrix,and strengthen the disc to restore normal spine flexion.Cellular therapy has gained attention for IVD management as an alternative therapeutic option.In this review,we present an overview of the anatomical and molecular structure and the surrounding pathophysiology of the IVD.Modern therapeutic approaches,including proteins and growth factors,cellular and gene therapy,and cell fate regulators are reviewed.Similarly,small molecules that modulate the fate of stem cells for their differentiation into chondrocytes and notochordal cell types are highlighted.
基金The Study of Differentiation of Bone Mesenchymal Stem Cells Transplanted in Intervertebral Disc and Expression of ExogenousGene(30400163)
文摘Objective: To explore the survival and migration of bone mesenchymal stem cells transplantated in intervertebral disc of rabbits and expression of the exogenic genes. Methods. Thirty-two rabbits were used, A randomized block design was used and discs in the same rabbit were one block,the lumbar discs from L2-3 to L5-6 were randomly divided into blank group, saline group, cell transplantation group Ⅰand cell transplantation group Ⅱ. The fluorescence microscopy was used to determine the fluorescence of the maker protein GFP and DNA-PCR was used to analyze the copies of DNA of neomycin-resistant gene at 1, 3, 6, months after transplantation. Results: There was fluorescence in cell transplantation group Ⅰ and Ⅱ and none in blank group, saline group at 1, 3, 6 months after transplantation. In cell transplantation groups,the fluorescent distribution was more scatter with time, but no significant difference between cell groups Ⅰ and Ⅱ. The test of neomycin resistant gene expressed in cell transplantation group Ⅰ and Ⅱ and quantitative analysis showed that there was no significant difference between the cell groups Ⅰ and Ⅱ (P〉0.05). Conclusion: The transplanted bone mesenchymal stem cells can survive, migrate and the transfer genes can express efficiently, it suggests that the BMSC therapy may be effective to prevent and treat intervertebral disc degeneration.
基金supported by a grant from the National High Technology Research and Development Program of China (Program 863) (No. 2006AA02A124)
文摘KLD-12 peptide with a sequence of AcN-KLDLKLDLKLDL-CNH2 was synthesized and its biocompatibility was assessed in animals. Rabbit MSCs were cultured in the hydrogel for 2 weeks. Live cells were counted by using Calcein-AM/P1 fluorescence staining. MTT was employed to assess the viability of MSCs cultured in KLD-12 peptide solution of 0.01%, 0.03%, and 0.05%. Hemolysis test, skin irritation test and implantation test were conducted to evaluate its biocompatibility with host tissues. Our results demonstrated that the MSCs in hydrogel grew well and maintained round shape. Cell survival rate was 92.15% (mean: 92.15%±1.17%) at the 7th day and there was no difference in survival rate between day 7 and day 14. Cell proliferation test showed that the A value of the KLD-12 solutions was not significantly different from that of control groups (complete culture media) (P〉0.05) at the 24th and 48th h. The hemolysis rate of KLD-12 solution was 0.112%. Skin irritation test showed that the skin injected with KLD-12 solution remained normal and the score of skin irritation was 0. The histological examination with HE staining exhibited that the skin layers were clear and there was no infiltration with neutrophilic granulocytes and lymphocytes. It is concluded that KLD-12 peptide hydrogel bad a good biocompatibility with host rabbit and MSCs, and KLD-12 pep- tide hydrogel can provide an appropriate microenvironment for MSCs.
基金Supported by Higher Education Commission Pakistan,No. 7083
文摘BACKGROUND Intervertebral disc degeneration(IVDD)is the leading cause of lower back pain.Disc degeneration is characterized by reduced cellularity and decreased production of extracellular matrix(ECM).Mesenchymal stem cells(MSCs)have been envisioned as a promising treatment for degenerative illnesses.Cell-based therapy using ECM-producing chondrogenic derivatives of MSCs has the potential to restore the functionality of the intervertebral disc(IVD).AIM To investigate the potential of chondrogenic transcription factors to promote differentiation of human umbilical cord MSCs into chondrocytes,and to assess their therapeutic potential in IVD regeneration.METHODS MSCs were isolated and characterized morphologically and immunologically by the expression of specific markers.MSCs were then transfected with Sox-9 and Six-1 transcription factors to direct differentiation and were assessed for chondrogenic lineage based on the expression of specific markers.These differentiated MSCs were implanted in the rat model of IVDD.The regenerative potential of transplanted cells was investigated using histochemical and molecular analyses of IVDs.RESULTS Isolated cells showed fibroblast-like morphology and expressed CD105,CD90,CD73,CD29,and Vimentin but not CD45 antigens.Overexpression of Sox-9 and Six-1 greatly enhanced the gene expression of transforming growth factor beta-1 gene,BMP,Sox-9,Six-1,and Aggrecan,and protein expression of Sox-9 and Six-1.The implanted cells integrated,survived,and homed in the degenerated intervertebral disc.Histological grading showed that the transfected MSCs regenerated the IVD and restored normal architecture.CONCLUSION Genetically modified MSCs accelerate cartilage regeneration,providing a unique opportunity and impetus for stem cell-based therapeutic approach for degenerative disc diseases.
文摘Clinical studies have found that patients withcervical degenerative disease are usually accompanied by dizziness.Anterior cervical surgery can eliminate not only chronic neck pain,cervical radiculopathy or myelopathy,but also dizziness.Immunohistochemical studies show that a large number of mechanoreceptors,especially Ruffini corpuscles,are present in degenerated cervical discs.The available evidence suggests a key role of Ruffini corpuscles in the pathogenesis of dizziness caused by cervical degenerative disease(i.e.cervical discogenic dizziness).Disc degeneration is characterized by an elevation of inflammatory cytokines,which stimulates the mechanoreceptors in degenerated discs and results in peripheral sensitization.Abnormal cervical proprioceptive inputs from the mechanoreceptors are transmitted to the central nervous system,resulting in sensory mismatches with vestibular and visual information and leads to dizziness.In addition,neck pain caused by cervical disc degeneration can play a key role in cervical discogenic dizziness by increasing the sensitivity of muscle spindles.Like cervical discogenic pain,the diagnosis of cervical discogenic dizziness can be challenging and can be made only after other potential causes of dizziness have been ruled out.Conservative treatment is effective for the majority of patients.Existing basic and clinical studies have shown that cervical intervertebral disc degeneration can lead to dizziness.
基金supported by grants from the National Natu-ral Science Foundation of China(No.81171761,30973063)the Fundamental Research Funds for the Central Uni-versity(No.08143045)
文摘This study examined the correlation between osteoporosis and the degeneration of intervertebral discs. Sprague-Dawley rats were maintained up to 22 or 28 months. The femoral bone, tibial bone and lumbar vertebra were histologically studied and the expression of collagen type Ⅱ and Ⅹ in intervertebral discs was immunohistochemiscally determined. Several indices for the degeneration of intervertebral discs and osteoporosis and the correlation among them were then analyzed. Close correlations were found among the indices for the degeneration of intervertebral discs, including the relative area of the vascular bud, the ratio of the uncalcified and the calcified layers, the expression of collagen type Ⅱ and Ⅹ. The correlation with collagen type Ⅹ was negative. There existed positive correlations among the indices for osteoporosis, including the thickness ratio of cortical bone, the relative area of bone trabecula, the density of femoral and vertebral body bones, and the maximum stress and strain on bone. Analysis on the relationship of osteoporosis and the disease on disc showed that the indices of osteoporosis were negatively correlated with the indices of the degeneration of intervertebral discs but the expression of collagen type Ⅹ was positively correlated, with the density of vertebral body bones having the strongest dependence on collagen type Ⅹ. The maximum stress and strain bore no correlation with the degeneration of intervertebral discs. These results suggest that osteoporosis was negatively correlated with the degeneration of intervertebral discs.
文摘Objective: To investigate epidural fat distribution patterns in patients with lumbar intervertebral disc protrusion. Methods: Medical records were selected randomly from 30 patients whose diagnoses were consistent with the inclusion criteria of the study. Thickness of bilateral fat, the longest length of posterior fat, thickness of bilateral yellow ligament and the hernial distance of lumbar discs were measured by MRI at L3/L4, L4/L5 and L5/S 1 levels. According to clinical symptoms of lumbar intervertebral disc protrusion, the patients were divided into two groups at all space levels. All data were analyzed by statistical software. Results: The longest length of posterior epidural fat at the symptomatic levels was shorter than that at the non-symptomatic levels in each disc space. The symptomatic levels had no effect on the whole thickness of the lateral fat and lateral yellow ligaments. Conclusion: Epidural fat distribution in patients with lumbar intcrvertebral disc protrusion is different from that in normal adults. It is affected by the hernial distance of lumbar discs. The diagnostic criteria for spinal epidural lipomatosis in normal adults may therefore prove to be inappropriate for patients with lumbar intervertebral disc protrusion.
文摘Objective: To observe the therapeutic effect of traction combined with acupuncture on lumbar intervertebral disc herniation (LIDH). Methods:Eighty-three patients diagnosed as LIDH were randomly divided into treatment group (n=42)and control group (n=41). In the treatment group, besides lumbar traction, electroacupuncture at Jiaji (EX-B 2, L 3~5), Shenshu (BL 23), Qihai (CV 6), Mingmen (GV 4), Huantiao (GB 30), Chengshan (BL 57) and Yanglingquan (GB 34) was added. In the control group, only lumbar traction was applied. Results: In treatment group, the cure plus markedly effective rate was 80.95% with a total effective rate of 92.86%, while in control group, it was 39.02% with a total effective rate of 80.48%. The therapeutic effect in the treatment group was obviously better than that in the control group (P<0.001). Conclusion: Lumbar traction plus EA can effectively alleviate or even eliminate clinical symptoms and signs of lumbar intervertebral disc herniation.
文摘<strong>Objective:</strong> To describe the relationship between autophagy and apoptosis and the possible signaling pathways involved in degenerative lumbar intervertebral disc. <strong>Summary of Background Data:</strong> Autophagy and apoptosis are regulatory cellular mechanisms that determine many pathologies, including degenerative intervertebral disc disease. The interactions between these events in the damage or protection of intervertebral disc cells and in cellular homeostasis remain controversial. <strong>Methods:</strong> The sample size was twenty patients who underwent lumbar spine surgery for symptomatic disc herniation or spondylolisthesis. Intervertebral discs were classified by magnetic resonance as Pfirrmann grade IV and grade V. Six patients were operated on two levels, resulting in twenty-six intervertebral discs that were submitted to immunohistochemistry to verify the protein expression of autophagy and apoptosis markers. <strong>Results: </strong>The autophagic markers had greater protein expression in the human intervertebral disc (Pfirrmann Grades IV and V). Under these conditions, autophagy and apoptosis showed a negative correlation. Regarding apoptosis, caspase 8 presented the highest protein expression, which allows inferring the preference for the extrinsic pathway in cell death. <strong>Conclusions: </strong>Autophagy had the greatest protein expression negative profile compared to apoptosis. Caspase 8 had the highest protein expression in apoptosis.