To study the effects of estrogen on the structure of the intestinal mucosal barrier, 18 healthy female Wistar Rats underwent estrus synchronization. In diestrus, they were divided into three groups: one sham operated...To study the effects of estrogen on the structure of the intestinal mucosal barrier, 18 healthy female Wistar Rats underwent estrus synchronization. In diestrus, they were divided into three groups: one sham operated control group (SHAM) ; one ovariec- tomized group (OVX) ; and one ovariectomized plus estradiol benzoate group ( OVX + E2 ). Intestinal mu- cosal epithelial cells, intraepithelial lymphocytes ([EL), and goblet cells (GCs) were observed by light microscope. The results showed that in the OVX group, the intestinal mucosa damaged obviously, the villus atrophied, the ratio of villus height to crypt depth reduced, and the number of IELs and GCs re- duced. The indicators of OVX + Ez group were signif- icantly higher than OVX group, but some indicators were lower than SHAM. These indicated that the function of intestinal mucosal barrier was greatly dam- aged in ovariectomied rat, and proper dosage of estra- diol benzoate Would improve the function of small in- testinal mucosal barrier in ovariectomied rat to some degree.展开更多
BACKGROUND The intestinal mucosal barrier is the first line of defense against numerous harmful substances,and it contributes to the maintenance of intestinal homeostasis.Recent studies reported that structural and fu...BACKGROUND The intestinal mucosal barrier is the first line of defense against numerous harmful substances,and it contributes to the maintenance of intestinal homeostasis.Recent studies reported that structural and functional changes in the intestinal mucosal barrier were involved in the pathogenesis of several intestinal diseases.However,no study thoroughly evaluated this barrier in patients with functional constipation(FC).AIM To investigate the intestinal mucosal barrier in FC,including the mucus barrier,intercellular junctions,mucosal immunity and gut permeability.METHODS Forty FC patients who fulfilled the Rome IV criteria and 24 healthy controls were recruited in the Department of Gastroenterology of China-Japan Friendship Hospital.The colonic mucus barrier,intercellular junctions in the colonic epithelium,mucosal immune state and gut permeability in FC patients were comprehensively examined.Goblet cells were stained with Alcian Blue/Periodic acid Schiff(AB/PAS)and counted.The ultrastructure of intercellular junctional complexes was observed under an electron microscope.Occludin and zonula occludens-1(ZO-1)in the colonic mucosa were located and quantified using immunohistochemistry and quantitative real-time polymerase chain reaction.Colonic CD3+intraepithelial lymphocytes(IELs)and CD3+lymphocytes in the lamina propria were identified and counted using immunofluorescence.The serum levels of D-lactic acid and zonulin were detected using enzyme-linked immunosorbent assay.RESULTS Compared to healthy controls,the staining of mucus secreted by goblet cells was darker in FC patients,and the number of goblet cells per upper crypt in the colonic mucosa was significantly increased in FC patients(control,18.67±2.99;FC,22.42±4.09;P=0.001).The intercellular junctional complexes in the colonic epithelium were integral in FC patients.The distribution of mucosal occludin and ZO-1 was not altered in FC patients.No significant differences were found in occludin(control,5.76E-2±1.62E-2;FC,5.17E-2±1.80E-2;P=0.240)and ZO-1(control,2.29E-2±0.93E-2;FC,2.68E-2±1.60E-2;P=0.333)protein expression between the two groups.The mRNA levels in occludin and ZO-1 were not modified in FC patients compared to healthy controls(P=0.145,P=0.451,respectively).No significant differences were observed in the number of CD3+IELs per 100 epithelial cells(control,5.62±2.06;FC,4.50±2.16;P=0.070)and CD3+lamina propria lymphocytes(control,19.69±6.04/mm^(2);FC,22.70±11.38/mm^(2);P=0.273).There were no significant differences in serum D-lactic acid[control,5.21(4.46,5.49)mmol/L;FC,4.63(4.31,5.42)mmol/L;P=0.112]or zonulin[control,1.36(0.53,2.15)ng/mL;FC,0.94(0.47,1.56)ng/mL;P=0.185]levels between FC patients and healthy controls.CONCLUSION The intestinal mucosal barrier in FC patients exhibits a compensatory increase in goblet cells and integral intercellular junctions without activation of mucosal immunity or increased gut permeability.展开更多
AIM:To investigate dynamic changes of serum IL-2, IL-10, IL-2/IL-10 and sFas in rats with acute necrotizing pancreatitis. To explore the expression of Fas in intestinal mucosa of rats with acute necrotizing pancreatit...AIM:To investigate dynamic changes of serum IL-2, IL-10, IL-2/IL-10 and sFas in rats with acute necrotizing pancreatitis. To explore the expression of Fas in intestinal mucosa of rats with acute necrotizing pancreatitis (ANP). METHODS:A total of 64 Sprague-Dawley (SD) rats were randomly divided into two groups:normal control group (C group), ANP group (P group). An ANP model was induced by injection of 50 g/L sodium taurocholate under the pancreatic membrane. Normal control group received isovolumetric injection of 9 g/L physiological saline solution using the same method. The blood samples of the rats in each group were obtained via superior mesenteric vein to measure levels of IL-2, IL-10, sFas and calculate the value of IL-2/IL-10. The levels of IL-2, IL-10 and sFas were determined by ELISA. The severity of intestinal mucosal injury was evaluated by pathologic score. The expression of Fas in intestinal mucosal tissue was determined by immunohistochemistry staining. RESULTS:Levels of serum IL-2 were significantly higher in P group than those of C group (2.79 ± 0.51 vs 3.53 ± 0.62, 2.93 ± 0.89 vs 4.35 ± 1.11, 4.81 ± 1.23 vs 6.94 ± 1.55 and 3.41 ± 0.72 vs 4.80 ± 1.10, respectively, P < 0.01, for all) and its reached peak at 6 h. Levels of serum IL-10 were significantly higher in P group than those of C group at 6 h and 12 h (54.61 ± 15.81 vs 47.34 ± 14.62, 141.15 ± 40.21 vs 156.12 ± 43.10, 89.18 ± 32.52 vs 494.98 ± 11.23 and 77.15 ± 22.60 vs 93.28 ± 25.81, respectively, P < 0.01, for all). The values of IL-2/IL-10 were higher significantly in P group than those of C group at 0.5 h and 2 h (0.05 ± 0.01 vs 0.07 ± 0.02 and 0.02 ± 0.01 vs 0.03 ± 0.01, respectively, P < 0.01, for all), and it were significantly lower than those of C group at 6 h (0.05 ± 0.02 vs 0.01 ± 0.01, P < 0.01) and returned to the control level at 12 h (0.04 ± 0.01 vs 0.05 ± 0.02, P > 0.05). In sFas assay, there was no significant difference between P group and C group (3.16 ± 0.75 vs 3.31 ± 0.80, 4.05 ± 1.08 vs 4.32 ± 1.11, 5.93 ± 1.52 vs 5.41 ± 1.47 and 4.62 ± 1.23 vs 4.44 ± 1.16, respectively, P > 0.05, for all). Comparison of P group and C group, the pathological changes were aggravated significantly in P group. Immunohistochemistry staining show the expression of Fas was absent in normal intestinal tissues, however, it gradually increased after induction of pancreatitis in intestinal tissue, then reached their peaks at 12 h.CONCLUSION:Fas were involved in the pathogenesis of pancreatitis associated intestinal injury. The mechanisms of Fas may be associated to Fas mediated T helper cell apoptosis.展开更多
AIM: To explore the protective effect of bone marrow mesenchymal stem cells (BM MSCs) in the small intestinal mucosal barrier following heterotopic intestinal transplantation (HIT) in a rat model.
Inhibiting the death receptor 3(DR3)signaling pathway in group 3 innate lymphoid cells(ILC3s)presents a promising approach for promoting mucosal repair in individuals with ulcerative colitis(UC).Paeoniflorin,a promine...Inhibiting the death receptor 3(DR3)signaling pathway in group 3 innate lymphoid cells(ILC3s)presents a promising approach for promoting mucosal repair in individuals with ulcerative colitis(UC).Paeoniflorin,a prominent component of Paeonia lactiflora Pall.,has demonstrated the ability to restore barrier function in UC mice,but the precise mechanism remains unclear.In this study,we aimed to delve into whether paeoniflorin may promote intestinal mucosal repair in chronic colitis by inhibiting DR3 signaling in ILC3s.C57BL/6 mice were subjected to random allocation into 7 distinct groups,namely the control group,the 2%dextran sodium sulfate(DSS)group,the paeoniflorin groups(25,50,and 100 mg/kg),the anti-tumor necrosis factor-like ligand 1A(anti-TL1A)antibody group,and the IgG group.We detected the expression of DR3 signaling pathway proteins and the proportion of ILC3s in the mouse colon using Western blot and flow cytometry,respectively.Meanwhile,DR3-overexpressing MNK-3 cells and 2%DSS-induced Rag1^(-/-)mice were used for verification.The results showed that paeoniflorin alleviated DSS-induced chronic colitis and repaired the intestinal mucosal barrier.Simultaneously,paeoniflorin inhibited the DR3 signaling pathway in ILC3s and regulated the content of cytokines(interleukin-17A,granulocyte-macrophage colony stimulating factor,and interleukin-22).Alternatively,paeoniflorin directly inhibited the DR3 signaling pathway in ILC3s to repair mucosal damage independently of the adaptive immune system.We additionally confirmed that paeoniflorin-conditioned medium(CM)restored the expression of tight junctions in Caco-2 cells via coculture.In conclusion,paeoniflorin ameliorates chronic colitis by enhancing the intestinal barrier in an ILC3-dependent manner,and its mechanism is associated with the inhibition of the DR3 signaling pathway.展开更多
Background: Polyamines are essential for cell growth and beneficial for intestinal maturation. To evaluate the effects of putrescine on alleviating intestinal atrophy and underlying molecular mechanisms, both in vivo ...Background: Polyamines are essential for cell growth and beneficial for intestinal maturation. To evaluate the effects of putrescine on alleviating intestinal atrophy and underlying molecular mechanisms, both in vivo feeding trial and in vitro cell culture were conducted. Weanling pigs were fed a diet supplemented with 0, 0.1%, 0.2% or0.3% putrescine dihydrochloride, whereas porcine intestinal epithelial cells(IPEC-J2) were challenged with lipopolysaccharide(LPS) in the presence of 200 μmol/L putrescine.Results: Dietary supplementation with 0.2% putrescine dihydrochloride decreased the incidence of diarrhea with an improvement in intestinal integrity. Inhibition of ornithine decarboxylase activity decreased the proliferation and migration of IPEC-J2 cells, and this effect was alleviated by the supplementation with putrescine. The phosphorylation of extracellular signal regulated kinase and focal adhesion kinase was enhanced by putrescine. LPS increased the expression of inflammatory cytokines [tumor necrosis factor α(TNF-α), interleukin 6(IL-6) and IL-8],and inhibited cell proliferation and migration in IPEC-J2 cells. Adding exogenous putrescine suppressed the expression of TNF-α, IL-6 and IL-8, and recovered cell migration and proliferation in LPS-treated IPEC-J2 cells. Dietary putrescine supplementation also reduced the m RNA levels of TNF-α, IL-6 and IL-8 and their upstream regulator nuclear receptor kappa B p65 subunit in the jejunal mucosa of piglets.Conclusions: Dietary supplementation with putrescine mitigated mucosal atrophy in weanling piglets through improving anti-inflammatory function and suppressing inflammatory response. Our results have important implications for nutritional management of intestinal integrity and health in weanling piglets and other neonates.展开更多
Background The mechanism of mucosal damage induced by ischemia-reperfusion (IR) after hemorrhagic shock is complex; mast cells (MC) degranulation is associated with the mucosal damage. Astragalus membranaceus can ...Background The mechanism of mucosal damage induced by ischemia-reperfusion (IR) after hemorrhagic shock is complex; mast cells (MC) degranulation is associated with the mucosal damage. Astragalus membranaceus can protect intestinal mucosa against intestinal oxidative damage after hemorrhagic shock, and some antioxidant agents could prevent MC against degranulation. This study aimed to observe the effects of astragalus membranaceus injection on the activity of intestinal mucosal mast cells (IMMC) after hemorrhage shock-reperfusion in rats Methods Thirty-two Wistar rats were randomly divided into the normal group, model group, low dosage group, (treated with Astragalus membranacaus injection, 10 g crude medication/kg) and high dosage group (treated with Astragalus membranacaus injection, 20 g crude medication/kg). The rat model of hemorrhagic shock-reperfusion was induced by hemorrhage for 60 minutes followed by 90 minutes of reperfusion. The animals were administrated with 3 ml of the test drug solution before reperfusion. At the end of study, intestinal pathology, ultrastructure of IMMC, and expression of tryptase were assayed. The levels of malondisldehyde (MDA), TNF-α, histamine, and superoxide dismutase (SOD) activity in intestine were detected, and the number of IMMC was counted. Results The Chiu's score of the rats in the model group was higher than in other groups (P〈0.01). The Chiu's score in the high dosage group was higher than that in the low dosage group (P〈0.05). Hemorrhage-reperfusion induced IMMC degranulation: Astragalus membranaceus injection attenuated this degranulation. Expression of tryptase and the number of IMMC in the model group increased compared with the other groups (P〈0.01) and was significantly reduced by the treatments of Astragalus membranaceus injection at both doses. There was no significant difference between the two treatment groups (P〉0.05). MDA content and concentration of TNF-α in the model group were higher than that in the other three groups (P〈0.05), and the concentration of TNF-α in the low dosage group was higher than that in the high dosage group (P〈0.05). SOD activity and the concentration of histamine in the model group were lower than the other three groups (P〈0.05). There was a negative correlation between the Chiu's score and the concentration of histamine and a positive correlation between the Chiu's score and the concentration of TNF-α and between the SOD activity and the concentration of histamine in the four groups (P〈0.05). Conclusion Astragalus membranaceus injection may reduce the damage to small intestine mucosa by inhibiting the activated IMMC after hemorrhagic shock.展开更多
This letter critically evaluates the effects of proton pump inhibitors(PPIs)on inflammatory bowel disease,particularly focusing on Crohn's disease(CD)and ulcerative colitis(UC),as discussed in Liang et al’s recen...This letter critically evaluates the effects of proton pump inhibitors(PPIs)on inflammatory bowel disease,particularly focusing on Crohn's disease(CD)and ulcerative colitis(UC),as discussed in Liang et al’s recent review.While the review provides significant insights,it relies heavily on cross-sectional and observational studies,which limits the ability to draw causal inferences.The heterogeneous study populations and inconsistent definitions of long-term PPI use further complicate the findings.This letter also highlights the need for rigorous control of confounding factors and considers the potential publication bias in the existing literature.The implications of these issues are discussed in the context of both CD and UC,and future research directions are proposed to address these shortcomings.展开更多
AIM: To investigate the effects of Cromolyn Sodium (CS) pretreated prior to reperfusion on the activity of intestinal mucosal mast cells (IMMC) and mucous membrane of the small intestine in ischemia-reperfusion (IR) i...AIM: To investigate the effects of Cromolyn Sodium (CS) pretreated prior to reperfusion on the activity of intestinal mucosal mast cells (IMMC) and mucous membrane of the small intestine in ischemia-reperfusion (IR) injury of rats. METHODS: Thirty-two Sprague-Dawley (SD) rats were randomly divided into four groups: sham group (group S), model group (group M), high and low dosage of CS groups, (treated with CS 50 mg/kg or 25 mg/kg, group C1 and C2). Intestinal IR damage was induced by clamping the superior mesenteric artery for 45 min followed by reperfusion for 60 min. CS was intravenouly administrated 15 min before reperfusion. Ultrastructure and counts of IMMC, intestinal structure, the expression of tryptase, levels of malondisldehyde (MDA), TNF-α, histamine and superoxide dismutase (SOD) activity of the small intestine were detected at the end of experiment. RESULTS: The degranulation of IMMC was seen in group M and was attenuated by CS treatment. Chiu’s score of group M was higher than the other groups. CS could attenuate the up-regulation of the Chiu’s score, the levels of MDA, TNF-α, and expression of tryptase and the down-regulation of SOD activity and histamine concentration. The Chiu’s score and MDA content were negatively correlated, while SOD activity was positively correlated to the histamine concentration respectively in the IR groups. CONCLUSION: Pretreated of CS prior to reperfusion protects the small intestine mucous from ischemia- reperfusion damage, the mechanism is inhibited IMMC from degranulation.展开更多
The latest guideline about ulcerative colitis(UC) clinical practice stresses that mucosal healing, rather than anti-inflammation, is the main target in UC clinical management. Current mucosal dysfunction mainly closel...The latest guideline about ulcerative colitis(UC) clinical practice stresses that mucosal healing, rather than anti-inflammation, is the main target in UC clinical management. Current mucosal dysfunction mainly closely relates to the endoscopic intestinal wall(mechanical barrier) injury with the imbalance between intestinal epithelial cells(IECs) regeneration and death, as well as tight junction(TJ) dysfunction. It is suggested that biological barrier(gut microbiota), chemical barrier(mucus protein layer, MUC) and immune barrier(immune cells) all take part in the imbalance, leading to mechanical barrier injury. Lots of experimental studies reported that acupuncture and moxibustion on UC recovery by adjusting the gut microbiota, MUC and immune cells on multiple targets and pathways, which contributes to the balance of IEC regeneration and death, as well as TJ structure recovery in animals. Moreover, the validity and superiority of acupuncture and moxibustion were also demonstrated in clinic. This paper aims to review the achievements of acupuncture and moxibustion on mucosal healing and analyse the underlying mechanisms.展开更多
文摘To study the effects of estrogen on the structure of the intestinal mucosal barrier, 18 healthy female Wistar Rats underwent estrus synchronization. In diestrus, they were divided into three groups: one sham operated control group (SHAM) ; one ovariec- tomized group (OVX) ; and one ovariectomized plus estradiol benzoate group ( OVX + E2 ). Intestinal mu- cosal epithelial cells, intraepithelial lymphocytes ([EL), and goblet cells (GCs) were observed by light microscope. The results showed that in the OVX group, the intestinal mucosa damaged obviously, the villus atrophied, the ratio of villus height to crypt depth reduced, and the number of IELs and GCs re- duced. The indicators of OVX + Ez group were signif- icantly higher than OVX group, but some indicators were lower than SHAM. These indicated that the function of intestinal mucosal barrier was greatly dam- aged in ovariectomied rat, and proper dosage of estra- diol benzoate Would improve the function of small in- testinal mucosal barrier in ovariectomied rat to some degree.
基金the National Key Technology Support Program during“12th Five-Year Plan”Period of China,No.2014BAI08B00the Project“The role of the gut microbiota and metabolites in the pathogenesis of diarrheapredominant irritable bowel syndrome”of China-Japan Friendship Hospital,No.2019-64-K44.
文摘BACKGROUND The intestinal mucosal barrier is the first line of defense against numerous harmful substances,and it contributes to the maintenance of intestinal homeostasis.Recent studies reported that structural and functional changes in the intestinal mucosal barrier were involved in the pathogenesis of several intestinal diseases.However,no study thoroughly evaluated this barrier in patients with functional constipation(FC).AIM To investigate the intestinal mucosal barrier in FC,including the mucus barrier,intercellular junctions,mucosal immunity and gut permeability.METHODS Forty FC patients who fulfilled the Rome IV criteria and 24 healthy controls were recruited in the Department of Gastroenterology of China-Japan Friendship Hospital.The colonic mucus barrier,intercellular junctions in the colonic epithelium,mucosal immune state and gut permeability in FC patients were comprehensively examined.Goblet cells were stained with Alcian Blue/Periodic acid Schiff(AB/PAS)and counted.The ultrastructure of intercellular junctional complexes was observed under an electron microscope.Occludin and zonula occludens-1(ZO-1)in the colonic mucosa were located and quantified using immunohistochemistry and quantitative real-time polymerase chain reaction.Colonic CD3+intraepithelial lymphocytes(IELs)and CD3+lymphocytes in the lamina propria were identified and counted using immunofluorescence.The serum levels of D-lactic acid and zonulin were detected using enzyme-linked immunosorbent assay.RESULTS Compared to healthy controls,the staining of mucus secreted by goblet cells was darker in FC patients,and the number of goblet cells per upper crypt in the colonic mucosa was significantly increased in FC patients(control,18.67±2.99;FC,22.42±4.09;P=0.001).The intercellular junctional complexes in the colonic epithelium were integral in FC patients.The distribution of mucosal occludin and ZO-1 was not altered in FC patients.No significant differences were found in occludin(control,5.76E-2±1.62E-2;FC,5.17E-2±1.80E-2;P=0.240)and ZO-1(control,2.29E-2±0.93E-2;FC,2.68E-2±1.60E-2;P=0.333)protein expression between the two groups.The mRNA levels in occludin and ZO-1 were not modified in FC patients compared to healthy controls(P=0.145,P=0.451,respectively).No significant differences were observed in the number of CD3+IELs per 100 epithelial cells(control,5.62±2.06;FC,4.50±2.16;P=0.070)and CD3+lamina propria lymphocytes(control,19.69±6.04/mm^(2);FC,22.70±11.38/mm^(2);P=0.273).There were no significant differences in serum D-lactic acid[control,5.21(4.46,5.49)mmol/L;FC,4.63(4.31,5.42)mmol/L;P=0.112]or zonulin[control,1.36(0.53,2.15)ng/mL;FC,0.94(0.47,1.56)ng/mL;P=0.185]levels between FC patients and healthy controls.CONCLUSION The intestinal mucosal barrier in FC patients exhibits a compensatory increase in goblet cells and integral intercellular junctions without activation of mucosal immunity or increased gut permeability.
基金Zhenjiang Science and Technology Committee, No. SH2005044
文摘AIM:To investigate dynamic changes of serum IL-2, IL-10, IL-2/IL-10 and sFas in rats with acute necrotizing pancreatitis. To explore the expression of Fas in intestinal mucosa of rats with acute necrotizing pancreatitis (ANP). METHODS:A total of 64 Sprague-Dawley (SD) rats were randomly divided into two groups:normal control group (C group), ANP group (P group). An ANP model was induced by injection of 50 g/L sodium taurocholate under the pancreatic membrane. Normal control group received isovolumetric injection of 9 g/L physiological saline solution using the same method. The blood samples of the rats in each group were obtained via superior mesenteric vein to measure levels of IL-2, IL-10, sFas and calculate the value of IL-2/IL-10. The levels of IL-2, IL-10 and sFas were determined by ELISA. The severity of intestinal mucosal injury was evaluated by pathologic score. The expression of Fas in intestinal mucosal tissue was determined by immunohistochemistry staining. RESULTS:Levels of serum IL-2 were significantly higher in P group than those of C group (2.79 ± 0.51 vs 3.53 ± 0.62, 2.93 ± 0.89 vs 4.35 ± 1.11, 4.81 ± 1.23 vs 6.94 ± 1.55 and 3.41 ± 0.72 vs 4.80 ± 1.10, respectively, P < 0.01, for all) and its reached peak at 6 h. Levels of serum IL-10 were significantly higher in P group than those of C group at 6 h and 12 h (54.61 ± 15.81 vs 47.34 ± 14.62, 141.15 ± 40.21 vs 156.12 ± 43.10, 89.18 ± 32.52 vs 494.98 ± 11.23 and 77.15 ± 22.60 vs 93.28 ± 25.81, respectively, P < 0.01, for all). The values of IL-2/IL-10 were higher significantly in P group than those of C group at 0.5 h and 2 h (0.05 ± 0.01 vs 0.07 ± 0.02 and 0.02 ± 0.01 vs 0.03 ± 0.01, respectively, P < 0.01, for all), and it were significantly lower than those of C group at 6 h (0.05 ± 0.02 vs 0.01 ± 0.01, P < 0.01) and returned to the control level at 12 h (0.04 ± 0.01 vs 0.05 ± 0.02, P > 0.05). In sFas assay, there was no significant difference between P group and C group (3.16 ± 0.75 vs 3.31 ± 0.80, 4.05 ± 1.08 vs 4.32 ± 1.11, 5.93 ± 1.52 vs 5.41 ± 1.47 and 4.62 ± 1.23 vs 4.44 ± 1.16, respectively, P > 0.05, for all). Comparison of P group and C group, the pathological changes were aggravated significantly in P group. Immunohistochemistry staining show the expression of Fas was absent in normal intestinal tissues, however, it gradually increased after induction of pancreatitis in intestinal tissue, then reached their peaks at 12 h.CONCLUSION:Fas were involved in the pathogenesis of pancreatitis associated intestinal injury. The mechanisms of Fas may be associated to Fas mediated T helper cell apoptosis.
基金Supported by The Natural Science Foundation of China,No.81270528the Natural Science Foundation of Tianjin,China,No.08JCYBJC08400,No.11JCZDJC27800 and No.12JCZDJC25200the Technology Foundation of Health Bureau of Tianjin,China,No.2011KY11
文摘AIM: To explore the protective effect of bone marrow mesenchymal stem cells (BM MSCs) in the small intestinal mucosal barrier following heterotopic intestinal transplantation (HIT) in a rat model.
基金supported by the National Natural Science Foundation of China(Grant No.:82074092),Natural Science Foundation of Guangdong Province,China(Grant No.:2021A1515012219)Guangzhou University of Chinese Medicine“Double First-Class”and High-level University Discipline Collaborative Innovation Team Project,China(Grant No.:2021xk81) and Graduate Research Innovation Project of Guangzhou University of Chinese Medicine,China.
文摘Inhibiting the death receptor 3(DR3)signaling pathway in group 3 innate lymphoid cells(ILC3s)presents a promising approach for promoting mucosal repair in individuals with ulcerative colitis(UC).Paeoniflorin,a prominent component of Paeonia lactiflora Pall.,has demonstrated the ability to restore barrier function in UC mice,but the precise mechanism remains unclear.In this study,we aimed to delve into whether paeoniflorin may promote intestinal mucosal repair in chronic colitis by inhibiting DR3 signaling in ILC3s.C57BL/6 mice were subjected to random allocation into 7 distinct groups,namely the control group,the 2%dextran sodium sulfate(DSS)group,the paeoniflorin groups(25,50,and 100 mg/kg),the anti-tumor necrosis factor-like ligand 1A(anti-TL1A)antibody group,and the IgG group.We detected the expression of DR3 signaling pathway proteins and the proportion of ILC3s in the mouse colon using Western blot and flow cytometry,respectively.Meanwhile,DR3-overexpressing MNK-3 cells and 2%DSS-induced Rag1^(-/-)mice were used for verification.The results showed that paeoniflorin alleviated DSS-induced chronic colitis and repaired the intestinal mucosal barrier.Simultaneously,paeoniflorin inhibited the DR3 signaling pathway in ILC3s and regulated the content of cytokines(interleukin-17A,granulocyte-macrophage colony stimulating factor,and interleukin-22).Alternatively,paeoniflorin directly inhibited the DR3 signaling pathway in ILC3s to repair mucosal damage independently of the adaptive immune system.We additionally confirmed that paeoniflorin-conditioned medium(CM)restored the expression of tight junctions in Caco-2 cells via coculture.In conclusion,paeoniflorin ameliorates chronic colitis by enhancing the intestinal barrier in an ILC3-dependent manner,and its mechanism is associated with the inhibition of the DR3 signaling pathway.
基金supported by the National Natural Science Foundation of China(31672438)the Elite Youth Program of Chinese Academy of Agricultural Sciences(to XL)Texas A&M Agri Life Research H-8200(to GW)
文摘Background: Polyamines are essential for cell growth and beneficial for intestinal maturation. To evaluate the effects of putrescine on alleviating intestinal atrophy and underlying molecular mechanisms, both in vivo feeding trial and in vitro cell culture were conducted. Weanling pigs were fed a diet supplemented with 0, 0.1%, 0.2% or0.3% putrescine dihydrochloride, whereas porcine intestinal epithelial cells(IPEC-J2) were challenged with lipopolysaccharide(LPS) in the presence of 200 μmol/L putrescine.Results: Dietary supplementation with 0.2% putrescine dihydrochloride decreased the incidence of diarrhea with an improvement in intestinal integrity. Inhibition of ornithine decarboxylase activity decreased the proliferation and migration of IPEC-J2 cells, and this effect was alleviated by the supplementation with putrescine. The phosphorylation of extracellular signal regulated kinase and focal adhesion kinase was enhanced by putrescine. LPS increased the expression of inflammatory cytokines [tumor necrosis factor α(TNF-α), interleukin 6(IL-6) and IL-8],and inhibited cell proliferation and migration in IPEC-J2 cells. Adding exogenous putrescine suppressed the expression of TNF-α, IL-6 and IL-8, and recovered cell migration and proliferation in LPS-treated IPEC-J2 cells. Dietary putrescine supplementation also reduced the m RNA levels of TNF-α, IL-6 and IL-8 and their upstream regulator nuclear receptor kappa B p65 subunit in the jejunal mucosa of piglets.Conclusions: Dietary supplementation with putrescine mitigated mucosal atrophy in weanling piglets through improving anti-inflammatory function and suppressing inflammatory response. Our results have important implications for nutritional management of intestinal integrity and health in weanling piglets and other neonates.
基金This study was supported by the Chinese Traditional Medicine Foundation of Guangdong Province, China (No. 1040051).
文摘Background The mechanism of mucosal damage induced by ischemia-reperfusion (IR) after hemorrhagic shock is complex; mast cells (MC) degranulation is associated with the mucosal damage. Astragalus membranaceus can protect intestinal mucosa against intestinal oxidative damage after hemorrhagic shock, and some antioxidant agents could prevent MC against degranulation. This study aimed to observe the effects of astragalus membranaceus injection on the activity of intestinal mucosal mast cells (IMMC) after hemorrhage shock-reperfusion in rats Methods Thirty-two Wistar rats were randomly divided into the normal group, model group, low dosage group, (treated with Astragalus membranacaus injection, 10 g crude medication/kg) and high dosage group (treated with Astragalus membranacaus injection, 20 g crude medication/kg). The rat model of hemorrhagic shock-reperfusion was induced by hemorrhage for 60 minutes followed by 90 minutes of reperfusion. The animals were administrated with 3 ml of the test drug solution before reperfusion. At the end of study, intestinal pathology, ultrastructure of IMMC, and expression of tryptase were assayed. The levels of malondisldehyde (MDA), TNF-α, histamine, and superoxide dismutase (SOD) activity in intestine were detected, and the number of IMMC was counted. Results The Chiu's score of the rats in the model group was higher than in other groups (P〈0.01). The Chiu's score in the high dosage group was higher than that in the low dosage group (P〈0.05). Hemorrhage-reperfusion induced IMMC degranulation: Astragalus membranaceus injection attenuated this degranulation. Expression of tryptase and the number of IMMC in the model group increased compared with the other groups (P〈0.01) and was significantly reduced by the treatments of Astragalus membranaceus injection at both doses. There was no significant difference between the two treatment groups (P〉0.05). MDA content and concentration of TNF-α in the model group were higher than that in the other three groups (P〈0.05), and the concentration of TNF-α in the low dosage group was higher than that in the high dosage group (P〈0.05). SOD activity and the concentration of histamine in the model group were lower than the other three groups (P〈0.05). There was a negative correlation between the Chiu's score and the concentration of histamine and a positive correlation between the Chiu's score and the concentration of TNF-α and between the SOD activity and the concentration of histamine in the four groups (P〈0.05). Conclusion Astragalus membranaceus injection may reduce the damage to small intestine mucosa by inhibiting the activated IMMC after hemorrhagic shock.
文摘This letter critically evaluates the effects of proton pump inhibitors(PPIs)on inflammatory bowel disease,particularly focusing on Crohn's disease(CD)and ulcerative colitis(UC),as discussed in Liang et al’s recent review.While the review provides significant insights,it relies heavily on cross-sectional and observational studies,which limits the ability to draw causal inferences.The heterogeneous study populations and inconsistent definitions of long-term PPI use further complicate the findings.This letter also highlights the need for rigorous control of confounding factors and considers the potential publication bias in the existing literature.The implications of these issues are discussed in the context of both CD and UC,and future research directions are proposed to address these shortcomings.
基金Supported by The Chinese Traditional Medicine Foundation of Guangdong Province, China, No. 1040051
文摘AIM: To investigate the effects of Cromolyn Sodium (CS) pretreated prior to reperfusion on the activity of intestinal mucosal mast cells (IMMC) and mucous membrane of the small intestine in ischemia-reperfusion (IR) injury of rats. METHODS: Thirty-two Sprague-Dawley (SD) rats were randomly divided into four groups: sham group (group S), model group (group M), high and low dosage of CS groups, (treated with CS 50 mg/kg or 25 mg/kg, group C1 and C2). Intestinal IR damage was induced by clamping the superior mesenteric artery for 45 min followed by reperfusion for 60 min. CS was intravenouly administrated 15 min before reperfusion. Ultrastructure and counts of IMMC, intestinal structure, the expression of tryptase, levels of malondisldehyde (MDA), TNF-α, histamine and superoxide dismutase (SOD) activity of the small intestine were detected at the end of experiment. RESULTS: The degranulation of IMMC was seen in group M and was attenuated by CS treatment. Chiu’s score of group M was higher than the other groups. CS could attenuate the up-regulation of the Chiu’s score, the levels of MDA, TNF-α, and expression of tryptase and the down-regulation of SOD activity and histamine concentration. The Chiu’s score and MDA content were negatively correlated, while SOD activity was positively correlated to the histamine concentration respectively in the IR groups. CONCLUSION: Pretreated of CS prior to reperfusion protects the small intestine mucous from ischemia- reperfusion damage, the mechanism is inhibited IMMC from degranulation.
基金Supported by National Key Research and Development Program of China(No.2019YFC1709002)National Natural Science Foundation of China(No.81973947 and 82004453)+4 种基金Natural Science Foundation of Nanjing University of Chinese Medicine(No.XZR2020043)Jiangsu Province Chinese Medicine Science and Technology Development Program(No.YB201951)Changzhou Science and Technology Program(No.CJ20190070)Changzhou Municipal Health Commission Science and Technology Program(No.QN 201939)Changzhou Municipal Health Qing Miao Talent Training Program(No.CZQM2020083)。
文摘The latest guideline about ulcerative colitis(UC) clinical practice stresses that mucosal healing, rather than anti-inflammation, is the main target in UC clinical management. Current mucosal dysfunction mainly closely relates to the endoscopic intestinal wall(mechanical barrier) injury with the imbalance between intestinal epithelial cells(IECs) regeneration and death, as well as tight junction(TJ) dysfunction. It is suggested that biological barrier(gut microbiota), chemical barrier(mucus protein layer, MUC) and immune barrier(immune cells) all take part in the imbalance, leading to mechanical barrier injury. Lots of experimental studies reported that acupuncture and moxibustion on UC recovery by adjusting the gut microbiota, MUC and immune cells on multiple targets and pathways, which contributes to the balance of IEC regeneration and death, as well as TJ structure recovery in animals. Moreover, the validity and superiority of acupuncture and moxibustion were also demonstrated in clinic. This paper aims to review the achievements of acupuncture and moxibustion on mucosal healing and analyse the underlying mechanisms.