Smart wearable market is burgeoning,and flexible energy storage is crucial to cope with its development.The commonly-used metal-based current collectors are heavy with limited flexibility.Other carbon-based current co...Smart wearable market is burgeoning,and flexible energy storage is crucial to cope with its development.The commonly-used metal-based current collectors are heavy with limited flexibility.Other carbon-based current collectors are expensive and fragile.Moreover,the poor interface between active material and current collector leads to unsatisfactory stability.Herein,these two issues are attempted to be solved by using cheap and lightweight polyester-based fabrics as well as in-situ growth.A deposited thin layer of nickel on the fabrics not only enhances the conductivity,but also serves as the sacrificial precursor for the growth of active materials.Thus,intimate contact is secured via chemical bonding.The electrode with ternary(metalinorganic-organic)component shows excellent electrochemical performance.Namely,high areal capacity is realized(2.2 C cm^(-2)at 2 mA cm^(-2)),which is far superior to its rigid nickel-foam-based counterpart.Furthermore,an allsolid-state supercapacitor device was assembled.The device provides an areal capacity of 2.03 C cm^(-2)at the current density of 2 mA cm^(-2).It realizes an energy density of 0.45 mWh cm^(-2)when the power density is 1.6 mW cm^(-2).This work offers a feasible and cost-efficient way for fabricating electrode materials with excellent performance for portable supercapacitors.展开更多
Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high...Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high-quality interfacial contact.Herein,we develop a novel strategy to in-situ grow ultrathin/V-doped graphene(NG)layer on TiO_(2) hollow spheres(HS) with large area and intimate interfacial contact via a chemical vapor deposition(CVD).The optimized TiO^(2)/NG HS nanocomposite achieves total CO_(2)conversion rates(the sum yield of CO,CH_(3)OH and CH_(4))of 18.11μmol·g^(-1)h^(-1),which is about 4.6 times higher than blank T1O_(2)HS.Experimental results demonstrate that intimate interfacial contact and abundant pyridinic N sites can effectively facilitate photogenerated charge carrier separation and transport,realizing enhanced photocatalytic CO_(2)reduction performance.In addition,this work provides an effective strategy for in-situ construction of graphene-based photocatalysts for highly efficient photocatalytic CO_(2)conversion.展开更多
A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resis...A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resistance and sodium dendrite growth originating from the poor interface contact seriously hinder its practical application.Herein,a modified ultrasound welding was proposed to atomically bond Na anodes and Au-metalized Na_(3)Zr_(2)Si_(2)PO_(12) electrolytes associated with the in situ formation of Na–Au alloy interlayers.Thereupon,intimate Na_(3)Zr_(2)Si_(2)PO_(12)-Au/Na interfaces with a low interfacial resistance(~23Ωcm^(2))and a strong dendrite inhibition ability were constructed.The optimized Na symmetric battery can cycle steadily for more than 900 h at 0.3 mA cm^(-2) under a low overpotential(<50 mV)of Na electroplating/stripping and deliver a high critical current density of 0.8 mAcm^(-2) at room temperature.By incorporating the above interface into the solid-state Na metal battery,taking three-dimensional Na_(3)V_(2)(PO_(4))_(3) as the cathode,the full battery offers a high energy density of 291 Wh kg^(-1) at a high power density of 1860Wkg^(-1).A pouch-type solid-state sodium metal full battery based on a ceramic electrolyte was assembled for the first time,and it lit a 3 V LED lamp.Such a strategy of the ultrasound welding metalized solid-state electrolyte/Na interface by engineering the Na-Au interlayer would pave a new pathway to engineer a low-resistance and highly stable interface for high-energy/density solid-state sodium metal batteries.展开更多
The purposeful construction of dual Z-scheme system to the formation of intimate interface contact and multi-channel charge flow through the system remains a huge challenge.Herein,a tandem 2D/0D/2D g-C_(3)N_(4)nanoshe...The purposeful construction of dual Z-scheme system to the formation of intimate interface contact and multi-channel charge flow through the system remains a huge challenge.Herein,a tandem 2D/0D/2D g-C_(3)N_(4)nanosheets/FeOOH quantum dots/ZnIn_(2)S_(4)nanosheets(CNFeZn)dual Z-scheme system(DZSS)has been successfully constructed using electrostatic self-assembly method.Owing to the band structure and elaborate morphology of 2D g-C_(3)N_(4),0D FeOOH and 2D ZnIn_(2)S_(4)in unique designed DZSS,plenty of spatial charge transfer channels are formed between the g-C_(3)N_(4)/FeOOH and FeOOH/ZnIn_(2)S_(4)interfaces,which greatly accelerate the charge separation and transfer.As bifunctional catalysts,CNFeZn DZSS achieves the highest H_(2)evolution rate of~436.6 mmol/h with a great promotion of~10.6 folds and~6.9 folds compared to pristine g-C_(3)N_(4)and ZnIn_(2)S_(4),respectively.Meanwhile,the H_(2)O_(2)production rate reached~301.19 mmol/L after 60 min irradiation,up to~5.1 times and~2.3 times that of pristine g-C_(3)N_(4)and ZnIn_(2)S_(4).Experiment and DFT calculation further confirmed that the stable double built-in electronic field can be formed owing to the electron configuration between double interfaces,and reveal that the ample atomic-level charge transfer channels were established in the strong interaction connected double interfaces,which can act as the charge migration pathway promote the separation of photogenerated charges.展开更多
Preparation of efficient photocatalysts with ease of recovery in solar fuel generation is highly desired to achieve carbon neutralization in carbon dioxide(CO_(2))emissions.Inspired from the forest with superior light...Preparation of efficient photocatalysts with ease of recovery in solar fuel generation is highly desired to achieve carbon neutralization in carbon dioxide(CO_(2))emissions.Inspired from the forest with superior light penetration and fast gas transport,a TiO_(2)/g-C_(3)N_(4)composite nanowire arrays(NAs)film with maximized light utilization is devised.It is achieved by in-situ coating a thin layer of g-C_(3)N_(4)(as the leaf)on the vertically-oriented TiO_(2)arrays(as tree trunks)on Ti foil(as soil).Benefiting from the effective charge separation by S-scheme charge transfer,intimate contact by the in-situ growth as well as the ingenious structure,the composite,readily recyclable,displays exciting performance in photocatalytic CO_(2)reduction.It is beyond doubt that the combination of heterojunction construction and“nature-inspired biomimetic photocatalyst”design promises practical applications and industrial use.展开更多
In this work,well-defined 1D/1D WO3 nanorod/TiO2 nanobelt(WNR/TNB)hybrid heterostructure was fabricated by a simple electrostatic self-assembly method.The structure-property correlation was clarified by characterizing...In this work,well-defined 1D/1D WO3 nanorod/TiO2 nanobelt(WNR/TNB)hybrid heterostructure was fabricated by a simple electrostatic self-assembly method.The structure-property correlation was clarified by characterizing the crystal phases,morphologies,optical properties,photoluminescence and photocatalytic performances of the WNR/TNB heterostructures.It was demonstrated that photocatalytic performances of WNR/TNB heterostructure toward mineralization was superior to blank TNB,WNR and randomly mixed counterparts under simulated solar light irradiation,owing predominantly to the intimate interfacial contact between WNR and TNB,forming intimately integrated heterojunction,which promotes the spatial charge carriers transfer and electron relay,hence prolonging the lifetime of photogenerated electron-hole pairs.Moreover,photocatalytic mechanism was elucidated.It is anticipated that our work would provide an alternative strategy to construct diverse heterostructured photocatalysts for solar energy conversion.展开更多
基金supported by National Natural Science Foundation of China(21801200 and 22075217)National Key Research and Development Program of China(No.2018YFB1502001)+2 种基金the Innovative Research Funds of Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHD2020-001)the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education,Jianghan University(JDGD-202020)the Fundamental Research Funds for Central Universities(2021ⅣA137)。
文摘Smart wearable market is burgeoning,and flexible energy storage is crucial to cope with its development.The commonly-used metal-based current collectors are heavy with limited flexibility.Other carbon-based current collectors are expensive and fragile.Moreover,the poor interface between active material and current collector leads to unsatisfactory stability.Herein,these two issues are attempted to be solved by using cheap and lightweight polyester-based fabrics as well as in-situ growth.A deposited thin layer of nickel on the fabrics not only enhances the conductivity,but also serves as the sacrificial precursor for the growth of active materials.Thus,intimate contact is secured via chemical bonding.The electrode with ternary(metalinorganic-organic)component shows excellent electrochemical performance.Namely,high areal capacity is realized(2.2 C cm^(-2)at 2 mA cm^(-2)),which is far superior to its rigid nickel-foam-based counterpart.Furthermore,an allsolid-state supercapacitor device was assembled.The device provides an areal capacity of 2.03 C cm^(-2)at the current density of 2 mA cm^(-2).It realizes an energy density of 0.45 mWh cm^(-2)when the power density is 1.6 mW cm^(-2).This work offers a feasible and cost-efficient way for fabricating electrode materials with excellent performance for portable supercapacitors.
文摘Photocatalytic CO_(2)conversion efficiency is hampered by the rapid recombination of photogenerated charge carriers.It is effective to suppress the recombination by constructing cocatalysts on photocatalysts with high-quality interfacial contact.Herein,we develop a novel strategy to in-situ grow ultrathin/V-doped graphene(NG)layer on TiO_(2) hollow spheres(HS) with large area and intimate interfacial contact via a chemical vapor deposition(CVD).The optimized TiO^(2)/NG HS nanocomposite achieves total CO_(2)conversion rates(the sum yield of CO,CH_(3)OH and CH_(4))of 18.11μmol·g^(-1)h^(-1),which is about 4.6 times higher than blank T1O_(2)HS.Experimental results demonstrate that intimate interfacial contact and abundant pyridinic N sites can effectively facilitate photogenerated charge carrier separation and transport,realizing enhanced photocatalytic CO_(2)reduction performance.In addition,this work provides an effective strategy for in-situ construction of graphene-based photocatalysts for highly efficient photocatalytic CO_(2)conversion.
基金Scientific Developing Foundation of Tianjin Education Commission,Grant/Award Number:2018ZD09National Natural Science Foundation of China,Grant/Award Numbers:51777138,52202282。
文摘A solid-state sodium metal battery has cut a striking figure in next-generation large-scale energy storage technology on account of high safety,high energy density,and low cost.Nevertheless,the large interfacial resistance and sodium dendrite growth originating from the poor interface contact seriously hinder its practical application.Herein,a modified ultrasound welding was proposed to atomically bond Na anodes and Au-metalized Na_(3)Zr_(2)Si_(2)PO_(12) electrolytes associated with the in situ formation of Na–Au alloy interlayers.Thereupon,intimate Na_(3)Zr_(2)Si_(2)PO_(12)-Au/Na interfaces with a low interfacial resistance(~23Ωcm^(2))and a strong dendrite inhibition ability were constructed.The optimized Na symmetric battery can cycle steadily for more than 900 h at 0.3 mA cm^(-2) under a low overpotential(<50 mV)of Na electroplating/stripping and deliver a high critical current density of 0.8 mAcm^(-2) at room temperature.By incorporating the above interface into the solid-state Na metal battery,taking three-dimensional Na_(3)V_(2)(PO_(4))_(3) as the cathode,the full battery offers a high energy density of 291 Wh kg^(-1) at a high power density of 1860Wkg^(-1).A pouch-type solid-state sodium metal full battery based on a ceramic electrolyte was assembled for the first time,and it lit a 3 V LED lamp.Such a strategy of the ultrasound welding metalized solid-state electrolyte/Na interface by engineering the Na-Au interlayer would pave a new pathway to engineer a low-resistance and highly stable interface for high-energy/density solid-state sodium metal batteries.
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2021ME143,ZR2020MA076).
文摘The purposeful construction of dual Z-scheme system to the formation of intimate interface contact and multi-channel charge flow through the system remains a huge challenge.Herein,a tandem 2D/0D/2D g-C_(3)N_(4)nanosheets/FeOOH quantum dots/ZnIn_(2)S_(4)nanosheets(CNFeZn)dual Z-scheme system(DZSS)has been successfully constructed using electrostatic self-assembly method.Owing to the band structure and elaborate morphology of 2D g-C_(3)N_(4),0D FeOOH and 2D ZnIn_(2)S_(4)in unique designed DZSS,plenty of spatial charge transfer channels are formed between the g-C_(3)N_(4)/FeOOH and FeOOH/ZnIn_(2)S_(4)interfaces,which greatly accelerate the charge separation and transfer.As bifunctional catalysts,CNFeZn DZSS achieves the highest H_(2)evolution rate of~436.6 mmol/h with a great promotion of~10.6 folds and~6.9 folds compared to pristine g-C_(3)N_(4)and ZnIn_(2)S_(4),respectively.Meanwhile,the H_(2)O_(2)production rate reached~301.19 mmol/L after 60 min irradiation,up to~5.1 times and~2.3 times that of pristine g-C_(3)N_(4)and ZnIn_(2)S_(4).Experiment and DFT calculation further confirmed that the stable double built-in electronic field can be formed owing to the electron configuration between double interfaces,and reveal that the ample atomic-level charge transfer channels were established in the strong interaction connected double interfaces,which can act as the charge migration pathway promote the separation of photogenerated charges.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.51932007,51872220,51961135303,21871217,52073223,52063028,U1905215 and U1705251)。
文摘Preparation of efficient photocatalysts with ease of recovery in solar fuel generation is highly desired to achieve carbon neutralization in carbon dioxide(CO_(2))emissions.Inspired from the forest with superior light penetration and fast gas transport,a TiO_(2)/g-C_(3)N_(4)composite nanowire arrays(NAs)film with maximized light utilization is devised.It is achieved by in-situ coating a thin layer of g-C_(3)N_(4)(as the leaf)on the vertically-oriented TiO_(2)arrays(as tree trunks)on Ti foil(as soil).Benefiting from the effective charge separation by S-scheme charge transfer,intimate contact by the in-situ growth as well as the ingenious structure,the composite,readily recyclable,displays exciting performance in photocatalytic CO_(2)reduction.It is beyond doubt that the combination of heterojunction construction and“nature-inspired biomimetic photocatalyst”design promises practical applications and industrial use.
基金supported by the National Natural Science Foundation of China (Nos. 21673198,21373008 and 21621091)。
文摘In this work,well-defined 1D/1D WO3 nanorod/TiO2 nanobelt(WNR/TNB)hybrid heterostructure was fabricated by a simple electrostatic self-assembly method.The structure-property correlation was clarified by characterizing the crystal phases,morphologies,optical properties,photoluminescence and photocatalytic performances of the WNR/TNB heterostructures.It was demonstrated that photocatalytic performances of WNR/TNB heterostructure toward mineralization was superior to blank TNB,WNR and randomly mixed counterparts under simulated solar light irradiation,owing predominantly to the intimate interfacial contact between WNR and TNB,forming intimately integrated heterojunction,which promotes the spatial charge carriers transfer and electron relay,hence prolonging the lifetime of photogenerated electron-hole pairs.Moreover,photocatalytic mechanism was elucidated.It is anticipated that our work would provide an alternative strategy to construct diverse heterostructured photocatalysts for solar energy conversion.