Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the control...Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the controlling factors of reservoir development were analyzed,and the formation model of“intra-platform shoal thin-layer dolomite reservoir”was established.The Qixia Formation is a regressive cycle from bottom to top,in which the first member(Qi1 Member)develops low-energy open sea microfacies,and the second member(Qi2 Member)evolves into intra-platform shoal and inter-shoal sea with decreases in sea level.The intra-platform shoal is mainly distributed near the top of two secondary shallowing cycles of the Qi2 Member.The most important reservoir rock of the Qixia Formation is thin-layer fractured-vuggy dolomite,followed by vuggy dolomite.The semi-filled saddle dolomite is common in fracture-vug,and intercrystalline pores and residual dissolution pores combined with fractures to form the effective pore-fracture network.Based on the coupling analysis of sedimentary and diagenesis characteristics,the reservoir formation model of“pre-depositional micro-paleogeomorphology controlling shoal,sedimentary shoal controlling dolomite,penecontemporaneous dolomite benefiting preservation of pores,and late hydrothermal action effectively improving reservoir quality”was systematically established.The“first-order high zone”micro-paleogeomorphology before the deposition of the Qixia Formation controlled the development of large area of intra-platform shoals in Gaoshiti area during the deposition of the Qi2 Member.Shoal facies is the basic condition of early dolomitization,and the distribution range of intra-platform shoal and dolomite reservoir is highly consistent.The grain limestone of shoal facies is transformed by two stages of dolomitization.The penecontemporaneous dolomitization is conducive to the preservation of primary pores and secondary dissolved pores.The burial hydrothermal fluid enters the early dolomite body along the fractures associated with the Emeishan basalt event,makes it recrystallized into medium–coarse crystal dolomite.With the intercrystalline pores and the residual vugs after the hydrothermal dissolution along the fractures,the high-quality intra-platform shoal-type thin-layer dolomite reservoirs are formed.The establishment of this reservoir formation model can provide important theoretical support for the sustainable development of Permian gas reservoirs in the Sichuan Basin.展开更多
Based on the comprehensive analysis of core, thin section, logging and seismic data, this study carried out the identification and comparison of Permian Changxing Formation sequences, clarified the typical sedimentary...Based on the comprehensive analysis of core, thin section, logging and seismic data, this study carried out the identification and comparison of Permian Changxing Formation sequences, clarified the typical sedimentary architectures of intra-platform shoal, investigated the vertical and horizontal development and distribution of intra-platform shoal in each sequence, and thus established the sedimentary evolution model of shoal body. The study results are reflected in four aspects.First, there are two complete third-order sequences(SQ1 and SQ2) in Changxing Formation in central Sichuan Basin. SQ1 is generally thick in the north and thin in the south, and SQ2 shows a thickness differentiation trend of “two thicknesses and three thinnesses”. Second, the Changxing Formation in central Sichuan Basin mainly develops intra-platform shoal, inter-shoal sea and intra-platform depression subfacies. In the vertical direction, the intra-platform shoal mainly presents two typical sedimentary sequences: stable superposed and high-frequency interbedded. Third, the stable superimposed sedimentary sequence is developed in the shoal belt at the edge of intra-platform depression, which is composed of two shoal-forming periods and located in the highstand systems tracts(HSTs) of SQ1 and SQ2. The high-frequency interbedded sedimentary sequence is developed in the southern shoal belt of intra-platform depression, which is composed of four shoal-forming periods and mainly located in the HST of SQ2. Fourth, during the SQ1 deposition, the intra-platform shoal was mainly developed at the edge of the intra-platform depression on the north side of the study area, and the inter-shoal sea subfacies was mainly developed on the south side. During the SQ2 deposition, the intra-platform shoal was widely developed in the area, forming two nearly parallel intra-platform shoal belts. The study results provide direction and ideas for exploration of Changxing Formation intra-platform shoal reservoirs in central Sichuan Basin.展开更多
The Taiwan Shoal is the convex terrain in the southern Taiwan Strait, the largest strait in China. In 2006 and 2007, 21 samples and more than 200-km sub-bottom data as well as 80-km near shore side-scan sonar data wer...The Taiwan Shoal is the convex terrain in the southern Taiwan Strait, the largest strait in China. In 2006 and 2007, 21 samples and more than 200-km sub-bottom data as well as 80-km near shore side-scan sonar data were gotten, which gave an initial image of the boundaries of the Taiwan Shoal and revealed the internal structure of the sand waves in this area. The results showed that the major component of the sediment samples was sand, and sand waves occurred everywhere in this area, which closely followed the range of the Taiwan Shoal as we know. The western boundary of the Taiwan Shoal thus reaches the 30 m isobaths near the shore, and as a result, its area potentially covers approximately 12 800-14 770 km2. The sand waves have different shapes under the complex ocean dynamics, and the height of sand waves in the near shore is usually smaller than that in the Taiwan Shoal. The number of sand waves ranged from 1-5 per kilometer, with more waves in the isobath-intensive area, suggesting the importance of topography for the formation of sand waves. The stratigraphic structure under the seabed has parallel bedding or cross bedding, and large dipping groove bedding can be seen locally in different parts, which may be the result of terrestrial deposition since the Late Pleistocene.展开更多
Based on seismic, drilling data and experimental analysis, the characteristics and main controlling factors of shoal dolomite gas reservoir in the third member of Ordovician Yingshan Formation of Gucheng area, Tarim b...Based on seismic, drilling data and experimental analysis, the characteristics and main controlling factors of shoal dolomite gas reservoir in the third member of Ordovician Yingshan Formation of Gucheng area, Tarim basin were examined.The study shows that the dolomite gas reservoir in Gucheng area is lithologic gas reservoir controlled by shoal and fault jointly,and its formation is mainly attributed to the following factors:(1) The continuously developing paleotectonic structure has been in the direction of gas migration and accumulation;(2) The large area of medium-high energy grain bank deposited in gentle slope environment is the material basis for the formation of dolomite reservoir;(3) Atmospheric water leaching and dolomitization and fluid dissolution in fault zone are the key factors for the formation of high-quality dolomite reservoir;(4)The natural gas comes from cracking of the ancient oil reservoir and hydrocarbon generation of dispersed organic matter in source rocks, and the NNE-trending strike-slip fault is the dominant channel for vertical migration of natural gas;(5) Limestone cap rocks in the first and second members of Yingshan Formation provide direct sealing for the formation of gas reservoir there. On the basis of comprehensive analysis, it is pointed out that the Gucheng area has three grain shoal zones in the third member of Yingshan Formation in nearly S-N direction, which together with seven strike-slip fault zones in NNE direction control the development of shoal dolomite gas reservoir.展开更多
基金Supported by the National Natural Science Foundation of China(42172177)CNPC Scientific Research and Technological Development Project(2021DJ05)PetroChina-Southwest University of Petroleum Innovation Consortium Project(2020CX020000).
文摘Based on the study of the distribution of intra-platform shoals and the characteristics of dolomite reservoirs in the Middle Permian Qixia Formation in the Gaoshiti–Moxi area of the Sichuan Basin,SW China,the controlling factors of reservoir development were analyzed,and the formation model of“intra-platform shoal thin-layer dolomite reservoir”was established.The Qixia Formation is a regressive cycle from bottom to top,in which the first member(Qi1 Member)develops low-energy open sea microfacies,and the second member(Qi2 Member)evolves into intra-platform shoal and inter-shoal sea with decreases in sea level.The intra-platform shoal is mainly distributed near the top of two secondary shallowing cycles of the Qi2 Member.The most important reservoir rock of the Qixia Formation is thin-layer fractured-vuggy dolomite,followed by vuggy dolomite.The semi-filled saddle dolomite is common in fracture-vug,and intercrystalline pores and residual dissolution pores combined with fractures to form the effective pore-fracture network.Based on the coupling analysis of sedimentary and diagenesis characteristics,the reservoir formation model of“pre-depositional micro-paleogeomorphology controlling shoal,sedimentary shoal controlling dolomite,penecontemporaneous dolomite benefiting preservation of pores,and late hydrothermal action effectively improving reservoir quality”was systematically established.The“first-order high zone”micro-paleogeomorphology before the deposition of the Qixia Formation controlled the development of large area of intra-platform shoals in Gaoshiti area during the deposition of the Qi2 Member.Shoal facies is the basic condition of early dolomitization,and the distribution range of intra-platform shoal and dolomite reservoir is highly consistent.The grain limestone of shoal facies is transformed by two stages of dolomitization.The penecontemporaneous dolomitization is conducive to the preservation of primary pores and secondary dissolved pores.The burial hydrothermal fluid enters the early dolomite body along the fractures associated with the Emeishan basalt event,makes it recrystallized into medium–coarse crystal dolomite.With the intercrystalline pores and the residual vugs after the hydrothermal dissolution along the fractures,the high-quality intra-platform shoal-type thin-layer dolomite reservoirs are formed.The establishment of this reservoir formation model can provide important theoretical support for the sustainable development of Permian gas reservoirs in the Sichuan Basin.
基金Supported by the PetroChina-Southwest Petroleum University Innovation Consortium Technology Cooperation Project (2020CX010000)。
文摘Based on the comprehensive analysis of core, thin section, logging and seismic data, this study carried out the identification and comparison of Permian Changxing Formation sequences, clarified the typical sedimentary architectures of intra-platform shoal, investigated the vertical and horizontal development and distribution of intra-platform shoal in each sequence, and thus established the sedimentary evolution model of shoal body. The study results are reflected in four aspects.First, there are two complete third-order sequences(SQ1 and SQ2) in Changxing Formation in central Sichuan Basin. SQ1 is generally thick in the north and thin in the south, and SQ2 shows a thickness differentiation trend of “two thicknesses and three thinnesses”. Second, the Changxing Formation in central Sichuan Basin mainly develops intra-platform shoal, inter-shoal sea and intra-platform depression subfacies. In the vertical direction, the intra-platform shoal mainly presents two typical sedimentary sequences: stable superposed and high-frequency interbedded. Third, the stable superimposed sedimentary sequence is developed in the shoal belt at the edge of intra-platform depression, which is composed of two shoal-forming periods and located in the highstand systems tracts(HSTs) of SQ1 and SQ2. The high-frequency interbedded sedimentary sequence is developed in the southern shoal belt of intra-platform depression, which is composed of four shoal-forming periods and mainly located in the HST of SQ2. Fourth, during the SQ1 deposition, the intra-platform shoal was mainly developed at the edge of the intra-platform depression on the north side of the study area, and the inter-shoal sea subfacies was mainly developed on the south side. During the SQ2 deposition, the intra-platform shoal was widely developed in the area, forming two nearly parallel intra-platform shoal belts. The study results provide direction and ideas for exploration of Changxing Formation intra-platform shoal reservoirs in central Sichuan Basin.
基金Scientific Research Foundation of Third Institute of Oceanography, SOA under contract No. 2009004the Ocean Public Welfare Scientific Research Project under contract Nos 201005029 and 201105001
文摘The Taiwan Shoal is the convex terrain in the southern Taiwan Strait, the largest strait in China. In 2006 and 2007, 21 samples and more than 200-km sub-bottom data as well as 80-km near shore side-scan sonar data were gotten, which gave an initial image of the boundaries of the Taiwan Shoal and revealed the internal structure of the sand waves in this area. The results showed that the major component of the sediment samples was sand, and sand waves occurred everywhere in this area, which closely followed the range of the Taiwan Shoal as we know. The western boundary of the Taiwan Shoal thus reaches the 30 m isobaths near the shore, and as a result, its area potentially covers approximately 12 800-14 770 km2. The sand waves have different shapes under the complex ocean dynamics, and the height of sand waves in the near shore is usually smaller than that in the Taiwan Shoal. The number of sand waves ranged from 1-5 per kilometer, with more waves in the isobath-intensive area, suggesting the importance of topography for the formation of sand waves. The stratigraphic structure under the seabed has parallel bedding or cross bedding, and large dipping groove bedding can be seen locally in different parts, which may be the result of terrestrial deposition since the Late Pleistocene.
基金Supported by the National Natural Science Foundation of China(Grant No.U20A201009 and 41972157)PetroChina Science and Technology Major Project(Grant No.2016E-0204)。
文摘Based on seismic, drilling data and experimental analysis, the characteristics and main controlling factors of shoal dolomite gas reservoir in the third member of Ordovician Yingshan Formation of Gucheng area, Tarim basin were examined.The study shows that the dolomite gas reservoir in Gucheng area is lithologic gas reservoir controlled by shoal and fault jointly,and its formation is mainly attributed to the following factors:(1) The continuously developing paleotectonic structure has been in the direction of gas migration and accumulation;(2) The large area of medium-high energy grain bank deposited in gentle slope environment is the material basis for the formation of dolomite reservoir;(3) Atmospheric water leaching and dolomitization and fluid dissolution in fault zone are the key factors for the formation of high-quality dolomite reservoir;(4)The natural gas comes from cracking of the ancient oil reservoir and hydrocarbon generation of dispersed organic matter in source rocks, and the NNE-trending strike-slip fault is the dominant channel for vertical migration of natural gas;(5) Limestone cap rocks in the first and second members of Yingshan Formation provide direct sealing for the formation of gas reservoir there. On the basis of comprehensive analysis, it is pointed out that the Gucheng area has three grain shoal zones in the third member of Yingshan Formation in nearly S-N direction, which together with seven strike-slip fault zones in NNE direction control the development of shoal dolomite gas reservoir.