Owing to the excellent stability,biocompatibility and photoluminescence property,graphene quantum dots(GQDs)are emerging as a kind of potential materials to be applied in a series of fields ranging from sensor to drug...Owing to the excellent stability,biocompatibility and photoluminescence property,graphene quantum dots(GQDs)are emerging as a kind of potential materials to be applied in a series of fields ranging from sensor to drug delivery.As the growing concern for human and environmental safety,selective detection of metal ions has been paid more and more attention.GQDs,as nanoparticles with superior optical properties,have been attracting growing attention in the field of metal ions detection.In this work,glutathione(GSH)functionalized boron doped graphene quantum dots(B-GQDs@GSH)were successfully synthesized with stable bright blue fluorescence and has been used for the detection of Fe^(3+).A good linear relationship between 1/(F_(0)-F)and 1/c with the concentration ranging from 0.70 to 53μmol/L was obtained with a detection limit of 5.5 nmol/L.The application of B-GQDs@GSH for Fe^(3+)detection in water samples was demonstrated and the quenching mechanism was further explored.Due to low cytotoxicity and favorable biocompatibility,B-GQDs@GSH were successfully applied for cell fluorescence imaging and intracellular determination of Fe^(3+).展开更多
Precisely controlled spatial distributions of artificial light-harvesting systems in aqueous media are of significant importance for mimicking natural light-harvesting systems;however,they are often restrained by the ...Precisely controlled spatial distributions of artificial light-harvesting systems in aqueous media are of significant importance for mimicking natural light-harvesting systems;however,they are often restrained by the solubility and the aggregation-caused quenching effect of the hydrophobic chromophores.Herein,we report one highly efficient artificial light-harvesting system based on peptoid nanotubes that mimic the hierarchical cylindrical structure of natural systems.The high crystallinity of these nanotubes enabled the organization of arrays of donor chromophores with precisely controlled spatial distributions,favoring an efficient Förster resonance energy transfer(FRET)process in aqueous media.This FRET system exhibits an extremely high efficiency of 98.6%with a fluorescence quantum yield of 40%and an antenna effect of 29.9.We further demonstrated the use of this artificial light-harvesting system for quantifying miR-210 within cancer cells.The fluorescence intensity ratio of donor to acceptor is linearly related to the concentration of intercellular miR-210 in the range of 3.3–156 copies/cell.Such high sensitivity in intracellular detection of miR-210 using this artificial light-harvesting system offers a great opportunity and pathways for biological imaging and detection,and for the further creation of microRNA(miRNA)toolbox for quantitative epigenetics and personalized medicine.展开更多
基金financially supported by the Natural Science Foundation of Shanxi Province of China(201901D111210)Key Research Project of Science and Technology Plan in Jinzhong-Social Development Projects(Y213003)+1 种基金Special Project of Lvliang for Introduced High-level Science and Technology Talents(2021RC-2-1)Transverse Scientific Research Project of Shanxi Taiyuan Pharmaceutical Co.Ltd(2F022022006)
文摘Owing to the excellent stability,biocompatibility and photoluminescence property,graphene quantum dots(GQDs)are emerging as a kind of potential materials to be applied in a series of fields ranging from sensor to drug delivery.As the growing concern for human and environmental safety,selective detection of metal ions has been paid more and more attention.GQDs,as nanoparticles with superior optical properties,have been attracting growing attention in the field of metal ions detection.In this work,glutathione(GSH)functionalized boron doped graphene quantum dots(B-GQDs@GSH)were successfully synthesized with stable bright blue fluorescence and has been used for the detection of Fe^(3+).A good linear relationship between 1/(F_(0)-F)and 1/c with the concentration ranging from 0.70 to 53μmol/L was obtained with a detection limit of 5.5 nmol/L.The application of B-GQDs@GSH for Fe^(3+)detection in water samples was demonstrated and the quenching mechanism was further explored.Due to low cytotoxicity and favorable biocompatibility,B-GQDs@GSH were successfully applied for cell fluorescence imaging and intracellular determination of Fe^(3+).
基金supported by the U.S.Department of Energy,Office of Basic Energy Sciences,Division of Materials Science and Engineering under an award FWP 65357 at Pacific Northwest National Laboratory(PNNL)the Cougar Cage Fund for the work of biological imaging and detection of microRNA.Development of peptoid synthesis capabilities was supported by the Materials Synthesis and Simulation Across Scales(MS3)Initiative through the Laboratory Directed Research and Development(LDRD)program at PNNL.XRD work was conducted at the Advanced Light Source(ALS)of Lawrence Berkeley National Laboratory+1 种基金supported by the Office of Science(No.DE-AC02-05CH11231)PNNL is multi-program national laboratory operated for Department of Energy by Battelle(No.DE-AC05-76RL01830).
文摘Precisely controlled spatial distributions of artificial light-harvesting systems in aqueous media are of significant importance for mimicking natural light-harvesting systems;however,they are often restrained by the solubility and the aggregation-caused quenching effect of the hydrophobic chromophores.Herein,we report one highly efficient artificial light-harvesting system based on peptoid nanotubes that mimic the hierarchical cylindrical structure of natural systems.The high crystallinity of these nanotubes enabled the organization of arrays of donor chromophores with precisely controlled spatial distributions,favoring an efficient Förster resonance energy transfer(FRET)process in aqueous media.This FRET system exhibits an extremely high efficiency of 98.6%with a fluorescence quantum yield of 40%and an antenna effect of 29.9.We further demonstrated the use of this artificial light-harvesting system for quantifying miR-210 within cancer cells.The fluorescence intensity ratio of donor to acceptor is linearly related to the concentration of intercellular miR-210 in the range of 3.3–156 copies/cell.Such high sensitivity in intracellular detection of miR-210 using this artificial light-harvesting system offers a great opportunity and pathways for biological imaging and detection,and for the further creation of microRNA(miRNA)toolbox for quantitative epigenetics and personalized medicine.