The Nadingcuo high-K calc-alkaline rocks mainly composed of trachyte and trachyandesite are the largest outcrop area of volcanic rocks in southern Qiangtang terrane in the Tibetan plateau. However,their exact source a...The Nadingcuo high-K calc-alkaline rocks mainly composed of trachyte and trachyandesite are the largest outcrop area of volcanic rocks in southern Qiangtang terrane in the Tibetan plateau. However,their exact source and peterogenesis are still debated.^(40)Ar-^(39)Ar and LAM-ICPMS zircon U-Pb isotopic dating confirm that these rocks erupted in Eocene.In addition,the Nadingcuo volcanic rocks are characterized by high Sr/Y content ratios,similar with the adakite derived from partial melting of oceanic crust.They can be further classified as high Mg~#(Mg~#=48-57) and low Mg~# (Mg~#=33-42) subtypes.The Nadingcuo adakitic rocks have relatively low(^(87)Sr/^(86)Sr)_i and highε_(Nd)(t), showing a trend of similarity to the Dongcuo ophiolite present in the Bangong-Nujiang oceanic crust. Simple modeling indicates that the Nadingcuo adakitic rocks are a mix resulting from the basalt of Bangong-Nujiang Ocean with 10%-20%crustal material of Lhasa terrane.On these bases we suggest that the low Mg~# Nadingcuo adakitic rocks are the product of partial melting of remnant oceanic crust with small sediment,and the high Mg~# rocks are the result of reaction between rising melt of remnant oceanic crust with subducted sediment and mantle wedge.Therefore,the origin of Nadingcuo adakitic rocks may be related to intracontinental subduction triggered by collision of India-Asia during Cenozoic.展开更多
The Junggar orogen, Xinjiang, China, is an important part of the Ural-Mongolian orogen.The collisional orogenesis in this region occurred primarily in the Carboniferous and Permianwith an evolutional process of early ...The Junggar orogen, Xinjiang, China, is an important part of the Ural-Mongolian orogen.The collisional orogenesis in this region occurred primarily in the Carboniferous and Permianwith an evolutional process of early compression and late extension. Mineralization of gold andother metals in the Junggar orogen occurred mainly in the Permian and in a few cases in theLate Carboniferous. The deposits are largely distributed in areas where collisional orogenesiswas intensive and formed in a transitional stage from compression to extension. Therefore, goldmineralization in the Junggar orogen is fully consistent with the collisional orogenesis in time,space and geodynamic setting. This indicates that the mineral deposit model of collisionalorogenesis is applicable to prospecting and study of ore deposits in the Junggar orogen.Furthermore, the factual distribution of gold and other deposits in this region is just the same asthe collisional orogenic model presents.展开更多
Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision, es...Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision, especially its four-dimensional temporal-spatial evolution, is a subject that geological communities have long been concerned about and studied. Continent-continent collision is mainly manifested by strong underthrusting (subduction) of the underlying block along an intracontinental subduction zone and continuous obduction (thrusting propagation) of the overlying block along the intracontinental subduction zone, the occurrence of a basin-range tectonic framework in a direction perpendicular to the subduction zone and the flexure and disruption of the Moho. On the basis of numerical modeling, the authors discuss in detail the couplings between various amounts and rates of displacement caused by basin subsidence, mountain uplift and Moho updoming and downflexure during obduction (thrusting propagation) and subduction and the migration pattern of basin centers. They are probably indications or criteria for judgment or determination of continent-continent collision.展开更多
The relationship between the Yanshanian Movement, destruction of the North China Craton(NCC), and subduction of the western Pacific plate is crucial to reconstructing the middle-late Mesozoic tectonic evolution of the...The relationship between the Yanshanian Movement, destruction of the North China Craton(NCC), and subduction of the western Pacific plate is crucial to reconstructing the middle-late Mesozoic tectonic evolution of the eastern Asian continent and margin. The Yanshanian Movement was a globally important change in crustal tectonics during the Middle-Late Jurassic.Previous research has systematically studied the formation and evolution of the Yanshanian Movement, focusing on the timing and location of tectonic movements, and the sedimentary and volcanic strata. However, the question of whether the tectonic activity occurred globally, and the characteristics of the Yanshanian Movement remain debated. The main argument is that if a tectonic movement can only be characterized by a regional or local disconformity, and if the tectonic movement occurred in an intracontinental setting, with extensive deformation but with no disconformity despite volcanic eruptions and magmatic intrusions, accompanied by changes in crustal structure and composition, should it be defined as a tectonic event or process? This question requires further analysis. The main aim of this study is to distinguish whether the Yanshanian Movement is a local feature of the eastern Asian continent, or a global tectonic event related to subduction of the Pacific Plate. In this paper, based on previous research, we discuss the spatial and temporal evolution of the Yanshanian Movement, the controlling tectonic mechanisms, and its relationship to the reactivation and destruction of the NCC and the subduction of the western Paleo-Pacific slab.We emphasize that the Yanshanian Movement in the Middle-Late Jurassic is distinct from the lithospheric thinning responsible for Early Cretaceous extension and magmatism related to the destruction of the NCC. The various tectonic stages were constrained by different dynamics and tectonic settings, or by different tectonic events and processes. Therefore, it is possible that the deformation and reactivation of the NCC contributed to its destruction, in addition to lithospheric thinning. Finally, we discuss whether the Yanshanian Movement was associated with the destruction of the NCC.展开更多
基金supported by the following projects:National Basic Research Program of China (2009CB421004,2009CB421003)Natural Science Foundation of China(41073033,40872055,and 40930316)+1 种基金Chinese Academy of Sciences(KZCX2-YW-Q04)China Geological Survey(1212010818098)
文摘The Nadingcuo high-K calc-alkaline rocks mainly composed of trachyte and trachyandesite are the largest outcrop area of volcanic rocks in southern Qiangtang terrane in the Tibetan plateau. However,their exact source and peterogenesis are still debated.^(40)Ar-^(39)Ar and LAM-ICPMS zircon U-Pb isotopic dating confirm that these rocks erupted in Eocene.In addition,the Nadingcuo volcanic rocks are characterized by high Sr/Y content ratios,similar with the adakite derived from partial melting of oceanic crust.They can be further classified as high Mg~#(Mg~#=48-57) and low Mg~# (Mg~#=33-42) subtypes.The Nadingcuo adakitic rocks have relatively low(^(87)Sr/^(86)Sr)_i and highε_(Nd)(t), showing a trend of similarity to the Dongcuo ophiolite present in the Bangong-Nujiang oceanic crust. Simple modeling indicates that the Nadingcuo adakitic rocks are a mix resulting from the basalt of Bangong-Nujiang Ocean with 10%-20%crustal material of Lhasa terrane.On these bases we suggest that the low Mg~# Nadingcuo adakitic rocks are the product of partial melting of remnant oceanic crust with small sediment,and the high Mg~# rocks are the result of reaction between rising melt of remnant oceanic crust with subducted sediment and mantle wedge.Therefore,the origin of Nadingcuo adakitic rocks may be related to intracontinental subduction triggered by collision of India-Asia during Cenozoic.
文摘The Junggar orogen, Xinjiang, China, is an important part of the Ural-Mongolian orogen.The collisional orogenesis in this region occurred primarily in the Carboniferous and Permianwith an evolutional process of early compression and late extension. Mineralization of gold andother metals in the Junggar orogen occurred mainly in the Permian and in a few cases in theLate Carboniferous. The deposits are largely distributed in areas where collisional orogenesiswas intensive and formed in a transitional stage from compression to extension. Therefore, goldmineralization in the Junggar orogen is fully consistent with the collisional orogenesis in time,space and geodynamic setting. This indicates that the mineral deposit model of collisionalorogenesis is applicable to prospecting and study of ore deposits in the Junggar orogen.Furthermore, the factual distribution of gold and other deposits in this region is just the same asthe collisional orogenic model presents.
基金the National Natural Science Foundation of China(grant 19972072)Project of the Open Laboratory of Continental Geodynamics of the Ministry of Land and Resources(grant 9812) Stat Project 305 rgrant 96—915—06—04).
文摘Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision, especially its four-dimensional temporal-spatial evolution, is a subject that geological communities have long been concerned about and studied. Continent-continent collision is mainly manifested by strong underthrusting (subduction) of the underlying block along an intracontinental subduction zone and continuous obduction (thrusting propagation) of the overlying block along the intracontinental subduction zone, the occurrence of a basin-range tectonic framework in a direction perpendicular to the subduction zone and the flexure and disruption of the Moho. On the basis of numerical modeling, the authors discuss in detail the couplings between various amounts and rates of displacement caused by basin subsidence, mountain uplift and Moho updoming and downflexure during obduction (thrusting propagation) and subduction and the migration pattern of basin centers. They are probably indications or criteria for judgment or determination of continent-continent collision.
基金supported by the National Natural Science Foundation of China (Grant No. 90914004)
文摘The relationship between the Yanshanian Movement, destruction of the North China Craton(NCC), and subduction of the western Pacific plate is crucial to reconstructing the middle-late Mesozoic tectonic evolution of the eastern Asian continent and margin. The Yanshanian Movement was a globally important change in crustal tectonics during the Middle-Late Jurassic.Previous research has systematically studied the formation and evolution of the Yanshanian Movement, focusing on the timing and location of tectonic movements, and the sedimentary and volcanic strata. However, the question of whether the tectonic activity occurred globally, and the characteristics of the Yanshanian Movement remain debated. The main argument is that if a tectonic movement can only be characterized by a regional or local disconformity, and if the tectonic movement occurred in an intracontinental setting, with extensive deformation but with no disconformity despite volcanic eruptions and magmatic intrusions, accompanied by changes in crustal structure and composition, should it be defined as a tectonic event or process? This question requires further analysis. The main aim of this study is to distinguish whether the Yanshanian Movement is a local feature of the eastern Asian continent, or a global tectonic event related to subduction of the Pacific Plate. In this paper, based on previous research, we discuss the spatial and temporal evolution of the Yanshanian Movement, the controlling tectonic mechanisms, and its relationship to the reactivation and destruction of the NCC and the subduction of the western Paleo-Pacific slab.We emphasize that the Yanshanian Movement in the Middle-Late Jurassic is distinct from the lithospheric thinning responsible for Early Cretaceous extension and magmatism related to the destruction of the NCC. The various tectonic stages were constrained by different dynamics and tectonic settings, or by different tectonic events and processes. Therefore, it is possible that the deformation and reactivation of the NCC contributed to its destruction, in addition to lithospheric thinning. Finally, we discuss whether the Yanshanian Movement was associated with the destruction of the NCC.