In this paper, we prove the existence of a limit cycle for a given system of differential equations corresponding to an asymmetrical intraguild food web model with functional responses Holling type II for the middle a...In this paper, we prove the existence of a limit cycle for a given system of differential equations corresponding to an asymmetrical intraguild food web model with functional responses Holling type II for the middle and top predators and logistic grow for the (common) prey. The existence of such limit cycle is guaranteed, via the first Lyapunov coefficient and the Andronov-Hopf bifurcation theorem, under certain conditions for the parameters involved in the system.展开更多
文摘In this paper, we prove the existence of a limit cycle for a given system of differential equations corresponding to an asymmetrical intraguild food web model with functional responses Holling type II for the middle and top predators and logistic grow for the (common) prey. The existence of such limit cycle is guaranteed, via the first Lyapunov coefficient and the Andronov-Hopf bifurcation theorem, under certain conditions for the parameters involved in the system.