期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Phonon-assisted excitation energy transfer in photosynthetic systems
1
作者 陈浩 王信 +1 位作者 方爱平 李宏荣 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第9期581-586,共6页
The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vi... The phonon-assisted process of energy transfer aiming at exploring the newly emerging frontier between biology and physics is an issue of central interest.This article shows the important role of the intramolecular vibrational modes for excitation energy transfer in the photosynthetic systems.Based on a dimer system consisting of a donor and an acceptor modeled by two two-level systems,in which one of them is coupled to a high-energy vibrational mode,we derive an effective Hamiltonian describing the vibration-assisted coherent energy transfer process in the polaron frame.The effective Hamiltonian reveals in the case that the vibrational mode dynamically matches the energy detuning between the donor and the acceptor,the original detuned energy transfer becomes resonant energy transfer.In addition,the population dynamics and coherence dynamics of the dimer system with and without vibration-assistance are investigated numerically.It is found that,the energy transfer efficiency and the transfer time depend heavily on the interaction strength of the donor and the high-energy vibrational mode,as well as the vibrational frequency.The numerical results also indicate that the initial state and dissipation rate of the vibrational mode have little influence on the dynamics of the dimer system.Results obtained in this article are not only helpful to understand the natural photosynthesis,but also offer an optimal design principle for artificial photosynthesis. 展开更多
关键词 excitation energy transfer high-energy intramolecular vibrational motion resonant coherent transfer
下载PDF
Raman and Infrared Spectra for All-trans-astaxanthin in Dimethyl Sulfoxide Solvent
2
作者 蒋礼林 刘伟龙 杨延强 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第5期506-512,I0001,共8页
The Raman and infrared spectra of all-trans-astaxanthin (AXT) in dimethyl sulfoxide (DMSO) solvent were investigated experimentally and theoretically. Density functional cal-culations of the Raman spectra predict ... The Raman and infrared spectra of all-trans-astaxanthin (AXT) in dimethyl sulfoxide (DMSO) solvent were investigated experimentally and theoretically. Density functional cal-culations of the Raman spectra predict the splitting of the υ1 band into υ1-1 and υ1-2 compo-nents. The absence of splitting in Raman experimental spectra is ascribed to the competition between the two symmetric C=C stretching vibrations of the backbone chain. The υ1 band is very sensitive to the excitation wavelength: resonance excitation stimulates the higher-frequency υ1-2 mode, and off-resonance excitation corresponds to the lower-frequency υ1-1 mode. Analyses of the intramolecular hydrogen bonding between C=O and O-H in the AXT/DMSO system reveal that the C4=O1...H1-O3 and C4'=O2...H2-O4 bonds are strengthened and weakened, respectively, in the electronically excited state compared with those in the ground state. This result reveals significant variations of the AXT molecular structure in different electronic states. 展开更多
关键词 C=C stretching vibration Resonance excitation intramolecular hydrogen bonding Molecular structure
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部