As time and space constraints decrease due to the development of wireless communication network technology,the scale and scope of cyber-attacks targeting the Internet of Things(IoT)are increasing.However,it is difficu...As time and space constraints decrease due to the development of wireless communication network technology,the scale and scope of cyber-attacks targeting the Internet of Things(IoT)are increasing.However,it is difficult to apply high-performance security modules to the IoT owing to the limited battery,memory capacity,and data transmission performance depend-ing on the size of the device.Conventional research has mainly reduced power consumption by lightening encryption algorithms.However,it is difficult to defend large-scale information systems and networks against advanced and intelligent attacks because of the problem of deteriorating security perfor-mance.In this study,we propose wake-up security(WuS),a low-power security architecture that can utilize high-performance security algorithms in an IoT environment.By introducing a small logic that performs anomaly detection on the IoT platform and executes the security module only when necessary according to the anomaly detection result,WuS improves security and power efficiency while using a relatively high-complexity security module in a low-power environment compared to the conventional method of periodically exe-cuting a high-performance security module.In this study,a Python simulator based on the UNSW-NB15 dataset is used to evaluate the power consumption,latency,and security of the proposed method.The evaluation results reveal that the power consumption of the proposed WuS mechanism is approxi-mately 51.8%and 27.2%lower than those of conventional high-performance security and lightweight security modules,respectively.Additionally,the laten-cies are approximately 74.8%and 65.9%lower,respectively.Furthermore,the WuS mechanism achieved a high detection accuracy of approximately 96.5%or greater,proving that the detection efficiency performance improved by approximately 33.5%compared to the conventional model.The performance evaluation results for the proposed model varied depending on the applied anomaly-detection model.Therefore,they can be used in various ways by selecting suitable models based on the performance levels required in each industry.展开更多
Multi-Threshold CMOS(MTCMOS) is an effective technique for controlling leakage power with low delay overhead.However the large magnitude of ground bouncing noise induced by the sleep to active mode transition may caus...Multi-Threshold CMOS(MTCMOS) is an effective technique for controlling leakage power with low delay overhead.However the large magnitude of ground bouncing noise induced by the sleep to active mode transition may cause signal integrity problem in MTCMOS circuits.We propose a methodology for reducing ground bouncing noise under the wake-up delay constraint.An improved two-stage parallel power gating structure that can suppress the ground bouncing noise through turn on sets of sleep transistors consecutively is proposed.The size of each sleep transistor is optimized by a novel sizing algorithm based on a simple discharging model.Simulation results show that the proposed techniques achieve at least 23% improvement in the product of the peak amplitude of ground bouncing noise and the wake-up time when compared with other existing techniques.展开更多
This paper proposes a low power wake-up baseband circuit used in Chinese Electronic Toll Collection (ETC) system. To reduce the static power consumption, a low power biasing strategy is proposed. The proposed circuit ...This paper proposes a low power wake-up baseband circuit used in Chinese Electronic Toll Collection (ETC) system. To reduce the static power consumption, a low power biasing strategy is proposed. The proposed circuit is fabricated in TSMC 0.18 μm technology with an area of 0.09 mm 2 . Its current consumption is only 2.1 μA under 1.8 V power supply. It achieves a sensitivity of 0.95 mV at room temperature with a variation of only ±28% over -35℃ to 105℃.展开更多
Tags of micro-power active RFID system are usually supllied by cells battery, the power consumption is a crucial factor. The currently applied operating mode is of timing wake-up. In this paper, presented the method o...Tags of micro-power active RFID system are usually supllied by cells battery, the power consumption is a crucial factor. The currently applied operating mode is of timing wake-up. In this paper, presented the method of LF wake-up technology , discussed how to use it to solve the low-power problem of active RFID tag. Put forward the crucial electrocircuit and working program flow. Practices show that this solution is capable of solving the problem of low-power of active RFID.展开更多
The paper proposes a low power non-volatile baseband processor with wake-up identification(WUI) receiver for LR-WPAN transceiver.It consists of WUI receiver,main receiver,transmitter,non-volatile memory(NVM) and power...The paper proposes a low power non-volatile baseband processor with wake-up identification(WUI) receiver for LR-WPAN transceiver.It consists of WUI receiver,main receiver,transmitter,non-volatile memory(NVM) and power management module.The main receiver adopts a unified simplified synchronization method and channel codec with proactive Reed-Solomon Bypass technique,which increases the robustness and energy efficiency of receiver.The WUI receiver specifies the communication node and wakes up the transceiver to reduce average power consumption of the transceiver.The embedded NVM can backup/restore the states information of processor that avoids the loss of the state information caused by power failure and reduces the unnecessary power of repetitive computation when the processor is waked up from power down mode.The baseband processor is designed and verified on a FPGA board.The simulated power consumption of processor is 5.1uW for transmitting and 28.2μW for receiving.The WUI receiver technique reduces the average power consumption of transceiver remarkably.If the transceiver operates 30 seconds in every 15 minutes,the average power consumption of the transceiver can be reduced by two orders of magnitude.The NVM avoids the loss of the state information caused by power failure and energy waste caused by repetitive computation.展开更多
Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a...Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a new MAC protocol for in-band WuR system with addressing capabilities. While the DoRa protocol improves the WSNs energy efficiency, it still suffers from an overhearing problem when the WuR system is very often requested. The WuR wastes a noticeable amount of energy when overhearing to wake-up demand intended to other nodes, but it is neither measured nor solved in other works. In this paper, an adaptive duty-cycled DoRa (DC-DoRa) is then proposed to solve the overhearing problem. The primary concept of the work is to enable the WuR functionality before the node is addressed and to disable the WuR after the node sent data. Extensive simulations under OMNeT++ using real input parameters are then performed to show the significant energy-savings through the two protocols and the nearly suppression of overhearing with DC-DoRa. In fact, the mean power consumption is three-order below using the DoRa protocol compared to traditional MAC protocols. While overhearing can represent up to 93% of the WuR energy consumption with the DoRa protocol, it is reduced to only 1% with the DC-DoRa protocol.展开更多
Objective To evaluate the feasibility and safety of the self developed sound outside the ventilation device-esophageal nasopharynx catheter in brain functional areas surgery applications. Methods 13 patients involved ...Objective To evaluate the feasibility and safety of the self developed sound outside the ventilation device-esophageal nasopharynx catheter in brain functional areas surgery applications. Methods 13 patients involved functional areas of brain surgery were chosed. After induction of general anesthesia,the catheters were placed in the esophagus,then connected to anesthesia machines to an external展开更多
The performance and reliability of ferroelectric thin films at temperatures around a few Kelvin are critical for their application in cryo-electronics.In this work,TiN/Hf_(0.5)Zr_(0.5)O_(2)/TiN capacitors that are fre...The performance and reliability of ferroelectric thin films at temperatures around a few Kelvin are critical for their application in cryo-electronics.In this work,TiN/Hf_(0.5)Zr_(0.5)O_(2)/TiN capacitors that are free from the wake-up effect are investigated systematically from room temperature(300 K)to cryogenic temperature(30 K).We observe a consistent decrease in permittivity(εr)and a progressive increase in coercive electric field(Ec)as temperatures decrease.Our investigation reveals exceptional stability in the double remnant polarization(2P_(r))of our ferroelectric thin films across a wide temperature range.Specifically,at 30 K,a 2P_(r)of 36μC/cm^(2)under an applied electric field of 3.0 MV/cm is achieved.Moreover,we observed a reduced fatigue effect at 30 K in comparison to 300 K.The stable ferroelectric properties and endurance characteristics demonstrate the feasibility of utilizing HfO_(2)based ferroelectric thin films for cryo-electronics applications.展开更多
目的探讨肠内、肠外营养支持在临床活体部分小肠移植患者围手术期的应用策略及意义.方法我国首例父子间活体部分小肠移植围手术期肠外和肠内的营养支持比例和内容.术后1 d 开始肠外和肠内营养,术后31 d 停止肠外营养开始全部为肠内营养...目的探讨肠内、肠外营养支持在临床活体部分小肠移植患者围手术期的应用策略及意义.方法我国首例父子间活体部分小肠移植围手术期肠外和肠内的营养支持比例和内容.术后1 d 开始肠外和肠内营养,术后31 d 停止肠外营养开始全部为肠内营养支持.指标:体质量,血清清蛋白,D-木糖吸收试验,氮平衡;移植肠功能监测用钡餐,内镜.结果经围手术期不同时期的营养支持方案,患者的各项营养指标基本正常,术后6 mo 体质量达56 kg.结论正确的围手术期营养支持策略(合理的比例和时机,早期肠内营养)有利于活体部分小肠移植患者的恢复和肠功能的改善.展开更多
目的 探讨人工全髋关节置换术(total hip arthroplasty,THA)中影像监测控制假体放置的方法,提高初次THA假体置人的精确度。方法2000年4月~2005年8月,采用影像监测术中控制假体置人技术组(imaging,Ⅰ组)THA69例75髋,男32例,...目的 探讨人工全髋关节置换术(total hip arthroplasty,THA)中影像监测控制假体放置的方法,提高初次THA假体置人的精确度。方法2000年4月~2005年8月,采用影像监测术中控制假体置人技术组(imaging,Ⅰ组)THA69例75髋,男32例,女37例;年龄46~75岁,平均62.3岁。同期采用通用技术组(standard,S组)THA72例78髋,男33例,女39例;年龄43~75岁,平均60.5岁。患者术前诊断为股骨颈骨折(GardenⅢ、Ⅳ):Ⅰ组23例23髋。S组25例25髋;髋臼发育不良(Campbell Ⅰ、Ⅱ):Ⅰ组9例10髋,S组11例13髋;骨性关节炎:Ⅰ组16例17髋,S组15例15髋;股骨头坏死(FicatⅢ、Ⅳ):Ⅰ组15例16髋,S组17例17髋,类风湿关节炎:Ⅰ组6例9髋,S组4例8髋。其中骨水泥型假体Ⅰ组21髋,S组22髋;非骨水泥型假体Ⅰ组12髋,S组11髋;混合型假体Ⅰ组42髋,S组45髋。Ⅰ组采用通用技术加术中X线透视控制假体置入,对臼外倾角、臼前倾角、颈长度和偏心距进行量化性监测。S组采用目测加定位器控制假体置入。对两组患者的手术切口长度、出血量、输血量、手术时间、X线透视次数、感染、术后功能恢复以及术后X线影像监测假体位置进行比较。结果 Ⅰ组随访60例65髋,S组63例69髋,随访时间6个月~5年4个月,平均随访时间Ⅰ组3.6年,S组3.7年。两组的手术切口长度、出血量、输血量、手术时间、X线透视次数以及术后X线评价假体位置、术后1年功能恢复差异有统计学意义(P〈0.05),Ⅰ组THA效果明显优于S组。结论影像监测THA能显著提高假体放置的精确度,减少不良的THA手术。拥有C臂X线透视机的县级医院可以开展这种技术。展开更多
基金supplemented by a paper presented at the 6th International Symposium on Mobile Internet Security(MobiSec 2022).
文摘As time and space constraints decrease due to the development of wireless communication network technology,the scale and scope of cyber-attacks targeting the Internet of Things(IoT)are increasing.However,it is difficult to apply high-performance security modules to the IoT owing to the limited battery,memory capacity,and data transmission performance depend-ing on the size of the device.Conventional research has mainly reduced power consumption by lightening encryption algorithms.However,it is difficult to defend large-scale information systems and networks against advanced and intelligent attacks because of the problem of deteriorating security perfor-mance.In this study,we propose wake-up security(WuS),a low-power security architecture that can utilize high-performance security algorithms in an IoT environment.By introducing a small logic that performs anomaly detection on the IoT platform and executes the security module only when necessary according to the anomaly detection result,WuS improves security and power efficiency while using a relatively high-complexity security module in a low-power environment compared to the conventional method of periodically exe-cuting a high-performance security module.In this study,a Python simulator based on the UNSW-NB15 dataset is used to evaluate the power consumption,latency,and security of the proposed method.The evaluation results reveal that the power consumption of the proposed WuS mechanism is approxi-mately 51.8%and 27.2%lower than those of conventional high-performance security and lightweight security modules,respectively.Additionally,the laten-cies are approximately 74.8%and 65.9%lower,respectively.Furthermore,the WuS mechanism achieved a high detection accuracy of approximately 96.5%or greater,proving that the detection efficiency performance improved by approximately 33.5%compared to the conventional model.The performance evaluation results for the proposed model varied depending on the applied anomaly-detection model.Therefore,they can be used in various ways by selecting suitable models based on the performance levels required in each industry.
基金Supported by the National Natural Science Foundation of China (No. 6087001)
文摘Multi-Threshold CMOS(MTCMOS) is an effective technique for controlling leakage power with low delay overhead.However the large magnitude of ground bouncing noise induced by the sleep to active mode transition may cause signal integrity problem in MTCMOS circuits.We propose a methodology for reducing ground bouncing noise under the wake-up delay constraint.An improved two-stage parallel power gating structure that can suppress the ground bouncing noise through turn on sets of sleep transistors consecutively is proposed.The size of each sleep transistor is optimized by a novel sizing algorithm based on a simple discharging model.Simulation results show that the proposed techniques achieve at least 23% improvement in the product of the peak amplitude of ground bouncing noise and the wake-up time when compared with other existing techniques.
基金Supported by the CAS/SAFEA International Partnership Program for Creative Research TeamsNational Natural Science Foundation of China (No. 61106025)
文摘This paper proposes a low power wake-up baseband circuit used in Chinese Electronic Toll Collection (ETC) system. To reduce the static power consumption, a low power biasing strategy is proposed. The proposed circuit is fabricated in TSMC 0.18 μm technology with an area of 0.09 mm 2 . Its current consumption is only 2.1 μA under 1.8 V power supply. It achieves a sensitivity of 0.95 mV at room temperature with a variation of only ±28% over -35℃ to 105℃.
文摘Tags of micro-power active RFID system are usually supllied by cells battery, the power consumption is a crucial factor. The currently applied operating mode is of timing wake-up. In this paper, presented the method of LF wake-up technology , discussed how to use it to solve the low-power problem of active RFID tag. Put forward the crucial electrocircuit and working program flow. Practices show that this solution is capable of solving the problem of low-power of active RFID.
基金supported in part by the National Natural Science Foundation of China(No.61306027)
文摘The paper proposes a low power non-volatile baseband processor with wake-up identification(WUI) receiver for LR-WPAN transceiver.It consists of WUI receiver,main receiver,transmitter,non-volatile memory(NVM) and power management module.The main receiver adopts a unified simplified synchronization method and channel codec with proactive Reed-Solomon Bypass technique,which increases the robustness and energy efficiency of receiver.The WUI receiver specifies the communication node and wakes up the transceiver to reduce average power consumption of the transceiver.The embedded NVM can backup/restore the states information of processor that avoids the loss of the state information caused by power failure and reduces the unnecessary power of repetitive computation when the processor is waked up from power down mode.The baseband processor is designed and verified on a FPGA board.The simulated power consumption of processor is 5.1uW for transmitting and 28.2μW for receiving.The WUI receiver technique reduces the average power consumption of transceiver remarkably.If the transceiver operates 30 seconds in every 15 minutes,the average power consumption of the transceiver can be reduced by two orders of magnitude.The NVM avoids the loss of the state information caused by power failure and energy waste caused by repetitive computation.
文摘Wake-up radio (WuR) system is often presented as the best candidate for replacing traditional duty cycled Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs). The Double Radio (DoRa) protocol is a new MAC protocol for in-band WuR system with addressing capabilities. While the DoRa protocol improves the WSNs energy efficiency, it still suffers from an overhearing problem when the WuR system is very often requested. The WuR wastes a noticeable amount of energy when overhearing to wake-up demand intended to other nodes, but it is neither measured nor solved in other works. In this paper, an adaptive duty-cycled DoRa (DC-DoRa) is then proposed to solve the overhearing problem. The primary concept of the work is to enable the WuR functionality before the node is addressed and to disable the WuR after the node sent data. Extensive simulations under OMNeT++ using real input parameters are then performed to show the significant energy-savings through the two protocols and the nearly suppression of overhearing with DC-DoRa. In fact, the mean power consumption is three-order below using the DoRa protocol compared to traditional MAC protocols. While overhearing can represent up to 93% of the WuR energy consumption with the DoRa protocol, it is reduced to only 1% with the DC-DoRa protocol.
文摘Objective To evaluate the feasibility and safety of the self developed sound outside the ventilation device-esophageal nasopharynx catheter in brain functional areas surgery applications. Methods 13 patients involved functional areas of brain surgery were chosed. After induction of general anesthesia,the catheters were placed in the esophagus,then connected to anesthesia machines to an external
基金supported by the National Key R&D Program of China under Grant No.2022YFB3608400National Natural Science Foundation of China under Grant Nos.61825404,61888102,and 62104044the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.XDB44000000 and the project of MOE innovation platform.
文摘The performance and reliability of ferroelectric thin films at temperatures around a few Kelvin are critical for their application in cryo-electronics.In this work,TiN/Hf_(0.5)Zr_(0.5)O_(2)/TiN capacitors that are free from the wake-up effect are investigated systematically from room temperature(300 K)to cryogenic temperature(30 K).We observe a consistent decrease in permittivity(εr)and a progressive increase in coercive electric field(Ec)as temperatures decrease.Our investigation reveals exceptional stability in the double remnant polarization(2P_(r))of our ferroelectric thin films across a wide temperature range.Specifically,at 30 K,a 2P_(r)of 36μC/cm^(2)under an applied electric field of 3.0 MV/cm is achieved.Moreover,we observed a reduced fatigue effect at 30 K in comparison to 300 K.The stable ferroelectric properties and endurance characteristics demonstrate the feasibility of utilizing HfO_(2)based ferroelectric thin films for cryo-electronics applications.
文摘目的探讨肠内、肠外营养支持在临床活体部分小肠移植患者围手术期的应用策略及意义.方法我国首例父子间活体部分小肠移植围手术期肠外和肠内的营养支持比例和内容.术后1 d 开始肠外和肠内营养,术后31 d 停止肠外营养开始全部为肠内营养支持.指标:体质量,血清清蛋白,D-木糖吸收试验,氮平衡;移植肠功能监测用钡餐,内镜.结果经围手术期不同时期的营养支持方案,患者的各项营养指标基本正常,术后6 mo 体质量达56 kg.结论正确的围手术期营养支持策略(合理的比例和时机,早期肠内营养)有利于活体部分小肠移植患者的恢复和肠功能的改善.