期刊文献+
共找到147篇文章
< 1 2 8 >
每页显示 20 50 100
Changes in the Boreal Summer Intraseasonal Oscillation under Global Warming in CMIP6 Models
1
作者 Zhefan GAO Chaoxia YUAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第10期1984-1998,共15页
Changes in the activities of the Boreal Summer Intraseasonal Oscillation(BSISO)at the end of 21st century under the SSP5-8.5 scenario are assessed by adopting 17 CMIP6 models and the weak-temperature-gradient assumpti... Changes in the activities of the Boreal Summer Intraseasonal Oscillation(BSISO)at the end of 21st century under the SSP5-8.5 scenario are assessed by adopting 17 CMIP6 models and the weak-temperature-gradient assumption.Results show that the intraseasonal variations become more structured.The BSISO-related precipitation anomaly shows a larger zonal scale and propagates further northward.However,there is no broad agreement among models on the changes in the eastward and northward propagation speeds and the frequency of individual phases.In the western North Pacific(WNP),the BSISO precipitation variance is significantly increased,at 4.62%K^(−1),due to the significantly increased efficiency of vertical moisture transport per unit of BSISO apparent heating.The vertical velocity variance is significantly decreased,at−3.51%K^(−1),in the middle troposphere,due to the significantly increased mean-state static stability.Changes in the lower-level zonal wind variance are relatively complex,with a significant increase stretching from the northwestern to southeastern WNP,but the opposite in other regions.This is probably due to the combined impacts of the northeastward shift of the BSISO signals and the reduced BSISO vertical velocity variance under global warming.Changes in strong and normal BSISO events in the WNP are also compared.They show same-signed changes in precipitation and large-scale circulation anomalies but opposite changes in the vertical velocity anomalies.This is probably because the precipitation anomaly of strong(normal)events changes at a rate much larger(smaller)than that of the meanstate static stability,causing enhanced(reduced)vertical motion. 展开更多
关键词 Boreal Summer intraseasonal Oscillation global warming CMIP6 weak-temperature-gradient assumption
下载PDF
Intraseasonal variability of the Kuroshio observed via mooring at 18°N
2
作者 Xin YUAN Qingye WANG +2 位作者 Jie MA Shijian HU Dunxin HU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期468-483,共16页
Insufficient observations near the origin of the Kuroshio have led to incomplete understanding of the intraseasonal variability(ISV)of the Kuroshio.Direct measurements of the Kuroshio velocity were performed with an a... Insufficient observations near the origin of the Kuroshio have led to incomplete understanding of the intraseasonal variability(ISV)of the Kuroshio.Direct measurements of the Kuroshio velocity were performed with an array of three profiler moorings(122.7°E,123°E,and 123.3°E)along 18°N from January 2018 to February 2020.The ISV of the Kuroshio at 18°N was investigated based on a combination of mooring observations and global high-resolution HYbrid Coordinate Ocean Model reanalysis data.The estimated time-averaged transport in the upper 350 m across the observation transect was 6.5±2.6 Sv(1.0 Sv=10^(6)m^(3)/s).Two significant ISV peaks at 50-60 and~100 d were recognized in the power spectra of the meridional velocity and transport.Further analysis indicated that the ISV at 50-60 d was caused by westward-propagating eddies at average propagation speed of~13 cm/s and wavelength of~635 km.Another ISV peak at~100 d was mainly caused by northward-propagating eddies generated in the North Equatorial Current region.Further investigation indicated that the ISV of the Kuroshio at 18°N is dominated by meridional transport,rather than by the zonal migration of the Kuroshio main axis.Our findings provide a better understanding of the ISV of the Kuroshio east of Luzon Island. 展开更多
关键词 intraseasonal variability(ISV) KUROSHIO mooring observation EDDY
下载PDF
The Effect of Boreal Summer Intraseasonal Oscillation on Mixed Layer and Upper Ocean Temperature over the South China Sea 被引量:1
3
作者 JIA Wentao SUN Jilin +1 位作者 ZHANG Weimin WANG Huizan 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第2期285-296,共12页
Intraseasonal oscillation of the mixed layer and upper ocean temperature has been found to occur over the South China Sea(SCS)in the summer monsoon season based on the multiple reanalysis and observational data in thi... Intraseasonal oscillation of the mixed layer and upper ocean temperature has been found to occur over the South China Sea(SCS)in the summer monsoon season based on the multiple reanalysis and observational data in this study.The method of composite analysis and an upper ocean temperature equation assisted the analysis of physical mechanisms.The results show that the mixed layer depth(MLD)in the SCS has a significant oscillation with a 30-60 d period over the SCS region,which is closely related to boreal summer intraseasonal oscillation(BSISO)activities.The MLD can increase(decrease)during the positive(negative)phase of the BSISO and usually lags behind by approximately one-eighth of the lifecycle(5 days)of the BSISO-related convection.The BSISO may cause periodic anomalies at the air-sea boundary,such as wind stress and heat flux,so it can play a dominant role in modulating the variation in MLD.There also are significant intraseasonal seawater temperature anomalies in both the surface and subsurface layers of the SCS.In addition,during the initial phase of the BSISO,the temperature anomaly signals of the thermocline are obviously opposite to the sea surface temperature(SST),especially in the southern SCS.According to the results from the analysis of the temperature equation,the vertical entrainment term caused by BSISO-related wind stress is stronger than the thermal forcing during the initial stage of convection,and it is more significant in the southern SCS. 展开更多
关键词 boreal summer intraseasonal oscillation South China Sea mixed layer depth upper ocean temperature
下载PDF
Characteristics and mechanisms of the intraseasonal variability of sea surface salinity in the southeastern Arabian Sea during 2015-2020
4
作者 Hui Teng Yun Qiu +1 位作者 Xinyu Lin Xiwu Zhou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第5期25-34,共10页
Based on Soil Moisture Active Passive sea surface salinity(SSS)data from April 2015 to August 2020,combined with Objectively Analyzed Air-Sea Heat Flux and other observational data and Hybrid Coordinate Ocean Model(HY... Based on Soil Moisture Active Passive sea surface salinity(SSS)data from April 2015 to August 2020,combined with Objectively Analyzed Air-Sea Heat Flux and other observational data and Hybrid Coordinate Ocean Model(HYCOM)data,this work explores the characteristics and mechanisms of the intraseasonal variability of SSS in the southeastern Arabian Sea(SEAS).The results show that the intraseasonal variability of SSS in the SEAS is very significant,especially the strongest intraseasonal signal in SSS,which is located along the northeast monsoon current(NMC)path south of the Indian Peninsula.There are remarkable seasonal differences in intraseasonal SSS variability,which is very weak in spring and summer and much stronger in autumn and winter.This strong intraseasonal variability in autumn and winter is closely related to the Madden-Julian Oscillation(MJO)event during this period.The northeast wind anomaly in the Bay of Bengal(BOB)associated with the active MJO phase strengthens the East India Coastal Current and NMC and consequently induces more BOB low-salinity water to enter the SEAS,causing strong SSS fluctuations.In addition,MJO-related precipitation further amplifies the intraseasonal variability of SSS in SEAS.Based on budget analysis of the mixed layer salinity using HYCOM data,it is shown that horizontal salinity advection(especially zonal advection)dominates the intraseasonal variability of mixed layer salinity and that surface freshwater flux has a secondary role. 展开更多
关键词 southeastern Arabian Sea sea surface salinity intraseasonal variability air-sea interaction
下载PDF
SST effect on the pre-monsoon intraseasonal oscillation over the South China Sea based on atmospheric-coupled GCM comparison
5
作者 Yun LIANG Yan DU Shang-Ping XIE 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期409-417,共9页
The role of sea surface temperature(SST)variability in the pre-monsoonal(April to July)intraseasonal oscillation(ISO)over the South China Sea(SCS)is investigated using the Community Earth System Model Version 2(CESM2)... The role of sea surface temperature(SST)variability in the pre-monsoonal(April to July)intraseasonal oscillation(ISO)over the South China Sea(SCS)is investigated using the Community Earth System Model Version 2(CESM2).An Atmospheric Model Intercomparison Project(AMIP)simulation forced by daily sea surface temperatures(SSTs)derived from a parallel coupled general circulation model(CGCM)run was compared with observations and the mother coupled simulation.In the coupled model,the SST warming leads the peak convection about 1/4 period as in observations.The paralell uncoupled model fails to simulate this phase relationship,implying the importance of air-sea coupling in reproducing realistic ISO.Due to the near-quadrature phase relationship between SST and precipitation ISOs during the ISO events,it is difficult to distinguish the active/passive role of SST from observations alone.Significant correlation in intraseasonal precipitation between the daily SST-forced AMIP and mother CGCM runs indicates that SST plays a role in driving the atmospheric ISO. 展开更多
关键词 intraseasonal variability South China Sea Community Earth System Model Version 2(CESM2) sea surface temperature
下载PDF
Intraseasonal oscillation of the rainfall variability over Rwanda and evaluation of its subseasonal forecasting skill
6
作者 Xuan Zhou Lin Chen +3 位作者 Janet Umuhoza Yifeng Cheng Lu Wang Ran Wang 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第6期60-65,共6页
Rwanda is a landlocked country in central-eastern Africa.As a country highly dependent on rain-fed agriculture,Rwanda is vulnerable to rainfall variability.Observational data show that there are two rainy seasons in R... Rwanda is a landlocked country in central-eastern Africa.As a country highly dependent on rain-fed agriculture,Rwanda is vulnerable to rainfall variability.Observational data show that there are two rainy seasons in Rwanda,i.e.,the long rainy season and the short rainy season.This study mainly focuses on the dominant intraseasonal rainfall mode during the long rainy season(February-May),and evaluates the forecast skill for the intraseasonal variability(ISV)over Rwanda and its surrounding regions in a state-of-the-art dynamic model.During the long rainy season,observational results reveal that the dominant intraseasonal rainfall mode in Rwanda exhibits a significant variability on the 10-25-day time scale.One-point-correlation analysis further unveils that the 10-25-day intraseasonal rainfall variability in Rwanda co-varies with that in its adjacent areas,indicating that the overall 10-25-day rainfall variability in Rwanda and its adjacent regions(8°S-3°N,29°-37°E)should be considered collectively when studying the dominant intraseasonal rainfall variability in Rwanda.Composite results show that the development of the 10-25-day rainfall variability is associated with the anomalous westerly wind in Rwanda and its surrounding regions,which may trace back to a pair of westward-propagating equatorial Rossby waves.Based on the observational findings,an ISO_rainfall_index and an ISO_wind_index are proposed for quantitatively evaluating the forecast skill.The ECMWF model has a comparable skill in predicting the wind index and the rainfall index,with both indices showing a skill of 18 days. 展开更多
关键词 intraseasonal oscillation Rwanda intraseasonal rainfall variability Subseasonal forecast
下载PDF
Evolution of Intraseasonal Oscillation over the Tropica lWestern Pacific/South China Sea and Its Effect to the Summer Precipitation in Southern China 被引量:27
7
作者 李崇银 李桂龙 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1997年第2期123-131,共9页
In this paper, the evolution of intraseasonal oscillation over the South China Sea and tropical western Pacific area and its effect to the summer rainfall in the southern China are studied based on the ECMWF data and ... In this paper, the evolution of intraseasonal oscillation over the South China Sea and tropical western Pacific area and its effect to the summer rainfall in the southern China are studied based on the ECMWF data and TBB data) analyses. A very low-frequency waves exist in the tropics and play an important role in dominating intraseasonal oscillation and lead to special seasonal variation of intraseasonal oscillation over the South China Sea/tropical western Pacific area. The intraseasonal oscillation (convection) over the South China Sea and tropical western Pacific area is closely related to the summer rainfall (convection) in the southern China. Their relationship seems to be a seesaw feature, and this relationship resulting from the different pattern of convection in those two regions is caused by the differnt type of local meridional circulation. 展开更多
关键词 EVOLUTION intraseasonal oscillation Precipitation in southern China Local meridional circulation
下载PDF
The Relation between Atmospheric Intraseasonal Oscillation and Summer Severe Flood and Drought in the Changjiang-Huaihe River Basin 被引量:24
8
作者 杨辉 李崇银 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第4期540-553,共14页
The intraseasonal oscillation (ISO) is studied during the severe flood and drought years of the Changjiang-Huaihe River Basin with the NCEP/NCAR reanalysis data and the precipitation data in China. The results show th... The intraseasonal oscillation (ISO) is studied during the severe flood and drought years of the Changjiang-Huaihe River Basin with the NCEP/NCAR reanalysis data and the precipitation data in China. The results show that the upper-level (200 hPa) ISO pattern for severe flood (drought) is characterized by an anticyclonic (cyclonic) circulation over the southern Tibetan Plateau and a cyclonic (anti-cyclonic) circulation over the northern Tibetan Plateau. The lower-level (850 hPa) ISO pattern is characterized by an anticyclonic (cyclonic) circulation over the area south of the Changjiang River, the South China Sea, and the Western Pacific, and a cyclonic (anticyclonic) circulation from the area north of the Changjiang River to Japan. These low-level ISO circulation patterns are the first modes of the ISO wind field according to the vector EOF expansion with stronger amplitude of the EOF1 time coefficient in severe flood years than in severe drought years. The analyses also reveal that at 500 hPa and 200 hPa, the atmospheric ISO activity over the Changjiang-Huaihe River basin, North China, and the middle-high latitudes north of China is stronger for severe flood than for severe drought. The ISO meridional wind over the middle-high latitude regions can propagate southwards and meet with the northward propagating ISO meridional wind from lower latitude regions over the Changjiang-Huaihe River Basin during severe flood years, but not during severe drought years. 展开更多
关键词 summer severe flood and drought in the Changjiang-Huaihe River Basin intraseasonal oscillation ISO circulation pattern
下载PDF
Strong/Weak Summer Monsoon Activity over the South China Sea and Atmospheric Intraseasonal Oscillation 被引量:12
9
作者 李崇银 龙振夏 张庆云 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第6期1146-1160,共15页
The circulation pattern corresponding to the strong / weak summer monsoon in the South China Sea (SCS) region and the associated characteristics of the abnormal rainfall in Eastern China have been studied by using the... The circulation pattern corresponding to the strong / weak summer monsoon in the South China Sea (SCS) region and the associated characteristics of the abnormal rainfall in Eastern China have been studied by using the NECP reanalysis data and precipitation data in China. The results show that the climate variations in China caused by the strong / weak summer monsoon are completely different (even in opposite phase). The analyses of atmospheric intraseasonal oscillation (ISO) activity showed that the atmospheric ISO at 850 hPa near the SCS region is strong (weak) corresponding to the strong (weak) SCS summer monsoon. And the analyses of the circulation pattern of the atmospheric ISO showed that the strong / weak SCS summer monsoon circulation (200 hPa and 850 hPa) result mainly from abnormal atmospheric ISO. This study also reveals that the atmospheric ISO variability in the South China Sea region is usually at opposite phase with one in the Jiang-huai River basin. For example, strong (weak) atmospheric ISO in the SCS region corresponds to the weak (strong) atmospheric ISO in the Jiang-huai River basin. As to the intensity of atmospheric ISO, it is generally exhibits the local exciting characteristics, the longitudinal propagation is weak. Key words The SCS summer monsoon - Atmospheric intraseasonal oscillation - Circulation pattern This was supported by National Key Basic Science Program in China (G1998040903) and State Key Project-SCSMEX. 展开更多
关键词 The SCS summer monsoon Atmospheric intraseasonal oscillation Circulation pattern
下载PDF
Relationships between Interannual and Intraseasonal Variations of the Asian–Western Pacific Summer Monsoon Hindcasted by BCC CSM 1.1(m) 被引量:9
10
作者 LIU Xiangwen WU Tongwen +6 位作者 YANG Song LI Qiaoping CHENG Yanjie LIANG Xiaoyun FANG Yongjie JIE Weihua NIE Suping 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第5期1051-1064,共14页
Using hindcasts of the Beijing Climate Center Climate System Model, the relationships between interannual variability (IAV) and intraseasonal variability (ISV) of the Asian-western Pacific summer monsoon are diagn... Using hindcasts of the Beijing Climate Center Climate System Model, the relationships between interannual variability (IAV) and intraseasonal variability (ISV) of the Asian-western Pacific summer monsoon are diagnosed. Predictions show reasonable skill with respect to some basic characteristics of the ISV and IAV of the western North Pacific summer monsoon (WNPSM) and the Indian summer monsoon (ISM). However, the links between the seasonally averaged ISV (SAISV) and seasonal mean of ISM are overestimated by the model. This deficiency may be partially attributable to the overestimated frequency of long breaks and underestimated frequency of long active spells of ISV in normal ISM years, although the model is capable of capturing the impact of ISV on the seasonal mean by its shift in the probability of phases. Furthermore, the interannual relationships of seasonal mean, SAISV, and seasonally averaged long-wave variability (SALWV; i.e., the part with periods longer than the intraseasonal scale) of the WNPSM and ISM with SST and low-level circulation are examined. The observed seasonal mean, SAISV, and SALWV show similar correlation patterns with SST and atmospheric circulation, but with different details. However, the model presents these correlation distributions with unrealistically small differences among different scales, and it somewhat overestimates the teleconnection between monsoon and tropical central-eastern Pacific SST for the ISM, but underestimates it for the WNPSM, the latter of which is partially related to the too-rapid decrease in the impact of E1 Nifio-Southern Oscillation with forecast time in the model. 展开更多
关键词 interannual variability intraseasonal variability western North Pacific summer monsoon Indian summer monsoon
下载PDF
The 30–60-day Intraseasonal Oscillations over the Subtropical Western North Pacific during the Summer of 1998 被引量:9
11
作者 LU Riyu DONG Huilin +1 位作者 SU Qin Hui DING 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第1期1-7,共7页
The features of 30-60-day convection oscillations over the subtropical western North Pacific (WNP) were investigated, along with the degree of tropical-subtropical linkage between the oscillations over the WNP durin... The features of 30-60-day convection oscillations over the subtropical western North Pacific (WNP) were investigated, along with the degree of tropical-subtropical linkage between the oscillations over the WNP during summer 1998. It was found that 30-60-day oscillations were extremely strong in that summer over both the subtropical and tro]~ical WNP, providing a unique opportunity to study the behavior of subtropical oscillations and their relationship to tropical oscillations. Further analyses indicated that 30-60-day oscillations propagate westwards over the subtropical WNP and reach eastern China. In addition, 30-60-day oscillations in the subtropics are affected by those over the South China Sea (SCS) and tropical WNP through two mechanisms: (1) direct propagation from the tropics into the subtropics; and (2) a seesaw pattern between the tropics and subtropics, with the latter being predominant. 展开更多
关键词 intraseasonal oscillation CONVECTION western North Pacific tropical-extratropical interaction
下载PDF
The Boreal Summer Intraseasonal Oscillation Simulated by Four Chinese AGCMs Participating in the CMIP5 Project 被引量:7
12
作者 ZHAO Chongbo ZHOU Tianjun +1 位作者 SONG Lianchun REN Hongli 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2014年第5期1167-1180,共14页
The performances of four Chinese AGCMs participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in the simulation of the boreal summer intraseasonal oscillation (BSISO) are assessed. The authors ... The performances of four Chinese AGCMs participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in the simulation of the boreal summer intraseasonal oscillation (BSISO) are assessed. The authors focus on the major characteristics of BSISO: the intensity, significant period, and propagation. The results show that the four AGCMs can reproduce boreal summer intraseasonal signals of precipitation; however their limitations are also evident. Compared with the Climate Prediction Center Merged Analysis of Precipitation (CMAP) data, the models underestimate the strength of the intraseasonal oscillation (ISO) over the eastern equatorial Indian Ocean (IO) during the boreal summer (May to October), but overestimate the intraseasonal variability over the western Pacific (WP). In the model results, the westward propagation dominates, whereas the eastward propagation dominates in the CMAP data. The northward propagation in these models is tilted southwest-northeast, which is also different from the CMAP result. Thus, there is not a northeast-southwest tilted rain belt revolution off the equator during the BSISO's eastward journey in the models. The biases of the BSISO are consistent with the summer mean state, especially the vertical shear. Analysis also shows that there is a positive feedback between the intraseasonal precipitation and the summer mean precipitation. The positive feedback processes may amplify the models' biases in the BSISO simulation. 展开更多
关键词 boreal summer intraseasonal oscillation AGCM simulation FEEDBACK
下载PDF
The Tropical Intraseasonal Oscillation in SAMIL Coupled and Uncoupled General Circulation Models 被引量:5
13
作者 杨静 包庆 +1 位作者 王晓聪 周天军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第3期529-543,共15页
Simulations of tropical intraseasonal oscillation (TISO) in SAMIL, the Spectral Atmospheric Model from the Institute of Atmospheric Physics (IAP) State Key Laboratory of Numerical Modeling for Atmospheric Sciences... Simulations of tropical intraseasonal oscillation (TISO) in SAMIL, the Spectral Atmospheric Model from the Institute of Atmospheric Physics (IAP) State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) coupled and uncoupled general circulation models were comprehensively evaluated in this study. Compared to the uncoupled model, the atmosphere-ocean coupled model improved the TISO simulation in the following aspects: (1) the spectral intensity for the 30-80-day peak eastward periods was more realistic; (2) the eastward propagation signals over western Pacific were stronger; and (3) the variance distribution and stronger signals of Kelvin waves and mixed Rossby gravity waves were more realistic. Better performance in the coupled run was assumed to be associated with a better mean state and a more realistic relationship between precipitation and SST. In both the coupled and uncoupled runs, the unrealistic simulation of the eastward propagation over the equatorial Indian Ocean might have been associated with the biases of the precipitation mean state over the Indian Ocean, and the unrealistic split of maximum TISO precipitation variance over the Pacific might have corresponded to the exaggeration of the double Intertropical Convergence Zone (ITCZ) structure in precipitation mean state. However, whether a better mean state leads to better TISO activity remains questionable. Notably, the northward propagation over the Indian Ocean during summer was not improved in the mean lead-lag correlation analysis, but case studies have shown some strong cases to yield remarkably realistic northward propagation in coupled runs. 展开更多
关键词 tropical intraseasonal oscillation atmosphere-ocean interaction mean state northward prop-agation simulation
下载PDF
Intraseasonal variation of the East Asian summer monsoon in La Ni?a years 被引量:7
14
作者 XUE Feng ZHAO Jun-Jie 《Atmospheric and Oceanic Science Letters》 CSCD 2017年第2期156-167,共12页
Based on the composite result of six major the intraseasonal variation of the East Asian La Nina events during 1979-2012, the authors reveal summer monsoon (EASM) and summer rainfall in East Asia in La Nino years. D... Based on the composite result of six major the intraseasonal variation of the East Asian La Nina events during 1979-2012, the authors reveal summer monsoon (EASM) and summer rainfall in East Asia in La Nino years. Due to a higher SST over the western Pacific warm pool in the proceeding winter and spring, warm pool convection in summer is enhanced, leading to a cyclonic anomaly in the subtropical western Pacific. As a result, the western Pacific subtropical high is located more northeastward, and the seasonal march in East Asia is thus accelerated.This anomalous pattern tends to change with the seasonal march, with a maximum anomaly in July. Besides, there is less Mei-yu rainfall in the Yangtze River basin, with an earlier start and termination. The rainfall distribution in East Asia during La Nino years is characterized bya zonal pattern of less rainfall in eastern China and more rainfall over the oceanic region of the western Pacific. By comparison, a meridional pattern is found during El Nino years, with less rainfall in the tropics and more rainfall in the subtropics and midlatitudes. Therefore, the influence of La Nino on the EASM cannot be simply attributed to an antisymmetric influence of El Nino. 展开更多
关键词 La Nina East Asian summer monsoon intraseasonal variation western Pacific subtropical high
下载PDF
Intraseasonal Oscillation in Global Ocean Temperature Inferred from Argo 被引量:4
15
作者 胡瑞金 魏萌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第1期29-40,共12页
The intraseasonal oscillation (ISO; 14 97-day ocean was studied based on Argo observations periods) of temperature in the upper 2000 m of the global from 20052008. It is shown that near the surface the ISO existed m... The intraseasonal oscillation (ISO; 14 97-day ocean was studied based on Argo observations periods) of temperature in the upper 2000 m of the global from 20052008. It is shown that near the surface the ISO existed mainly in a band east of 60°E, between 10°S and 10°N, and the region around the Antarctic Circumpolar Current (ACC). At other levels analyzed, the ISOs also existed in the regions of the Kuroshio, the Gulf Stream, the Indonesian throughflow, the Somalia current, and the subtropical eountercurrent (STCC) of the North Pacific. The intraseasonal signals can be seen even at depths of about 2000 m in some regions of the global ocean. The largest amplitude of ISO appeared at the thermocline of the equatorial Pacific, Atlantic and Indian Ocean, with maximum standard deviation (STD) exceeding 1.2°C. The ACC, the Kuroshio, and the Gulf Stream regions all exhibited large STD for all levels analyzed. Especially at 1000 m, the largest STD appeared in the south and southeast of South Africa a part of the ACC, with a maximum value that reached 0.5°C. The ratios of the intraseasonal temperature variance to the total variance at 1000 m and at the equator indicated that, in a considerable part of the global deep ocean, the ISO was dominant in the variations of temperature, since such a ratio exceeded even 50% there. A case study also confirmed the existence of the ISO in the deep ocean. These results provide useful information for the design of field observations in the global ocean. Analysis and discussion are also given for the mechanism of the ISO. 展开更多
关键词 TEMPERATURE global ocean intraseasonal oscillation ARGO
下载PDF
Effects of Intraseasonal Oscillation on the Anomalous East Asian Summer Monsoon During 1999 被引量:5
16
作者 孙颖 丁一汇 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第2期279-296,共18页
The 1999 East Asian summer monsoon was very unusual for its weak northward advance and remarkably anomalous climate conditions. The monsoonal southwesterly airflow and related rain belt in East Asia were blocked south... The 1999 East Asian summer monsoon was very unusual for its weak northward advance and remarkably anomalous climate conditions. The monsoonal southwesterly airflow and related rain belt in East Asia were blocked south of the Yangtze River Valley. The monsoonal airflow and major moisture transport conduct shifted eastward and turned northward to Japan from the tropical western Pacific rather than to East China from the South China Sea (SCS) as in normal years. Severe and prolonged drought occurred over extensive areas of North China and heavy precipitation in South China and Japan. The investigation on the possible intrinsic mechanisms related to such an anomalous monsoon year has shown that the unique behavior of intraseasonal oscillation may play an essential role during this process. During this year, the northward propagation of 30-60-day anomalous low-level cyclone/anticyclone collapsed in the region around 20°N and did not extend beyond the latitudes of the Yangtze River basin due to the barrier of strong cold air intrusion from the mid-latitudes. The southwesterly moisture flux on the northwestern flank of the anticyclonic moisture transport system in the western North Pacific, which was regulated by the northward shift of 30-60-day cyclonic/anticyclonic moisture transport, also did not reach the region north of 30°N as well. Under this circumstance, the weak northward advance of the monsoon westerlies and associated northward moisture transport could not arrive in North China and led to the severe droughts there in 1999. The SCS and South China were mostly affected by the airflow in the southern and northern flanks of the same 30-60-day cyclones or anticyclones, respectively, and thus controlled by the nearly reverse zonal wind and moisture convergent/divergent conditions. The rainfall in the SCS and South China showed out-of-phase oscillation through the transient local Hadley circulation, with the rainfall maximum occurring in the SCS (South China) when the 30-60-day anticyclone (cyclone) reached its peak phase. 展开更多
关键词 30-60-day intraseasonal oscillation anomalous East Asian summer monsoon moisture transport moisture condition
下载PDF
Relationship between the Modes of Winter Tropical Pacific SST Anomalies and the Intraseasonal Variations of the Following Summer Rainfall Anomalies in China 被引量:8
17
作者 Huang Ping Huang Rong-Hui 《Atmospheric and Oceanic Science Letters》 2009年第5期295-300,共6页
In present study,EOF analysis and extended singular value decomposition (ESVD) analysis are performed to explore the relationship between the winter tropical sea surface temperature anomalies (SSTAs) in the Pacific an... In present study,EOF analysis and extended singular value decomposition (ESVD) analysis are performed to explore the relationship between the winter tropical sea surface temperature anomalies (SSTAs) in the Pacific and the following summer rainfall anomalies in China.The two leading modes of winter tropical SSTAs in the Pacific are the SSTAs pattern characterized by "positive anomalies in the East and negative anomalies in the West" like the typical eastern Pacific El Nio and negative anomalies in the West and the central Pacific warming pattern characterized by "positive anomalies in the central region but negative anomalies in the East and West".The intraseasonal variations of the rainfall anomalies during the following summer in China that are associated with the eastern Pacific warming mode are characterized by positive anomalies south of the Yangtze River and negative anomalies in the Yangtze-Huai River Valley in June,and negative anomalies in South China and positive anomalies in the Yangtze River Valley and North China in July and August.In contrast,after the central Pacific warming mode,the corresponding intraseasonal variations of China’s summer rainfall are characterized by a nearly consistent pattern during the three summer months,which is positive in the South China coast and North China and negative in the Yangtze River Valley except for the positive anomalies in the Yangtze-Huai River Valley in July.These results may provide a reference for the seasonal prediction of the summer drought and flood distributions in China. 展开更多
关键词 Pacific SSTAs summer rainfall in China intraseasonal variations
下载PDF
Influence of Intraseasonal Oscillation on the Asymmetric Decays of El Ni?o and La Ni?a 被引量:3
18
作者 Xiaomeng SONG Renhe ZHANG Xinyao RONG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第8期779-792,共14页
Warm and cold phases of El Nino–Southern Oscillation (ENSO) exhibit a significant asymmetry in their decay speed. To explore the physical mechanism responsible for this asymmetric decay speed, the asymmetric features... Warm and cold phases of El Nino–Southern Oscillation (ENSO) exhibit a significant asymmetry in their decay speed. To explore the physical mechanism responsible for this asymmetric decay speed, the asymmetric features of anomalous sea surface temperature (SST) and atmospheric circulation over the tropical Western Pacific (WP) in El Nino and La Nina mature-to-decay phases are analyzed. It is found that the interannual standard deviations of outgoing longwave radiation and 850 hPa zonal wind anomalies over the equatorial WP during El Nino (La Nina) mature-to-decay phases are much stronger (weaker) than the intraseasonal standard deviations. It seems that the weakened (enhanced) intraseasonal oscillation during El Nino (La Nina) tends to favor a stronger (weaker) interannual variation of the atmospheric wind, resulting in asymmetric equatorial WP zonal wind anomalies in El Nino and La Nina decay phases. Numerical experiments demonstrate that such asymmetric zonal wind stress anomalies during El Nino and La Nina decay phases can lead to an asymmetric decay speed of SST anomalies in the central-eastern equatorial Pacific through stimulating di erent equatorial Kelvin waves. The largest negative anomaly over the Nino3 region caused by the zonal wind stress anomalies during El Nino can be threefold greater than the positive Nino3 SSTA anomalies during La Nina, indicating that the stronger zonal wind stress anomalies over the equatorial WP play an important role in the faster decay speed during El Nino. 展开更多
关键词 ENSO asymmetry ENSO DECAY intraseasonal OSCILLATION OGCM
下载PDF
CHARACTERISTICS OF FREQUENCY SPECTRUM VARIATION OF INTRASEASONAL OSCILLATION OF CONVECTION DURING SOUTH CHINA SEA SUMMER MONSOON 被引量:6
19
作者 林爱兰 梁建茵 李春晖 《Journal of Tropical Meteorology》 SCIE 2006年第1期34-40,共7页
Datasets of equivalent temperature of black body (TBB) and sea surface temperature (SST)ranging from 1980 to 1997 are used to diagnose and analyze the characteristics of frequency spectrum andstrength of intraseasonal... Datasets of equivalent temperature of black body (TBB) and sea surface temperature (SST)ranging from 1980 to 1997 are used to diagnose and analyze the characteristics of frequency spectrum andstrength of intraseasonal variation of convection. The relationship between the strength of intraseasonaloscillation of convection, strength of convection itself and SST in the South China Sea (SCS) is studied. It isshown that, there are distinguishable annual, interannual and interdecadal variations in both strength andfrequency spectrum of intraseasonal variation of convection in SCS. There are connections between strength ofconvection, strength of ISO1 in the summer half (s.h.) year and SST in ensuing winter half (w.h.) year in SCS.The strong (weak) convection and strong (weak) ISO1 are associated with negative (positive) bias of SST inensuing w.h. year in SCS. 展开更多
关键词 convection in South China Sea intraseasonal oscillation characteristics of frequency spectrum SST in South China Sea
下载PDF
Intraseasonal Oscillation in the Tropical Indian Ocean 被引量:3
20
作者 李崇银 胡瑞金 杨辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第5期617-624,共8页
The features of the intraseasonal oscillation (ISO) of the tropical Indian Ocean are studied using several sources of observational data. It is shown that there are intraseasonal oscillations in the tropical Indian ... The features of the intraseasonal oscillation (ISO) of the tropical Indian Ocean are studied using several sources of observational data. It is shown that there are intraseasonal oscillations in the tropical Indian Ocean, but their periods vary with latitude: the major period is about 20-30 days in the equatorial region, about 30-50 days at 10°N/10°S latitude and 60-90 days at 20°N/20°S latitude. The intensity of the ISO increases with latitude but the speed of the westward propagation of the ISO decreases with latitude. The intensity and propagation speed of the ISO have clear interannual variation features. The atmospheric intraseasonal oscillation over the tropical Indian Ocean is also analyzed and compared with the oceanic intraseasonal oscillation. It is shown that the major period is in the range 30-60 days and the intensity and period of the atmospheric ISO decrease with latitude slightly. The zonal propagation of the atmospheric ISO also has some differences with the oceanic ISO. It is necessary to study the relationship between the atmospheric ISO and oceanic ISO in the tropical Indian Ocean deeply. 展开更多
关键词 intraseasonal oscillation tyopical Indian ocean atmospheric ISO oceanic ISO
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部