The features of 30-60-day convection oscillations over the subtropical western North Pacific (WNP) were investigated, along with the degree of tropical-subtropical linkage between the oscillations over the WNP durin...The features of 30-60-day convection oscillations over the subtropical western North Pacific (WNP) were investigated, along with the degree of tropical-subtropical linkage between the oscillations over the WNP during summer 1998. It was found that 30-60-day oscillations were extremely strong in that summer over both the subtropical and tro]~ical WNP, providing a unique opportunity to study the behavior of subtropical oscillations and their relationship to tropical oscillations. Further analyses indicated that 30-60-day oscillations propagate westwards over the subtropical WNP and reach eastern China. In addition, 30-60-day oscillations in the subtropics are affected by those over the South China Sea (SCS) and tropical WNP through two mechanisms: (1) direct propagation from the tropics into the subtropics; and (2) a seesaw pattern between the tropics and subtropics, with the latter being predominant.展开更多
The impact of tropical intraseasonal oscillations on the precipitation of Guangdong in Junes and its physical mechanism are analyzed using 30-yr(1979 to 2008), 86-station observational daily precipitation of Guangdong...The impact of tropical intraseasonal oscillations on the precipitation of Guangdong in Junes and its physical mechanism are analyzed using 30-yr(1979 to 2008), 86-station observational daily precipitation of Guangdong and daily atmospheric data from NCEP-DOE Reanalysis. It is found that during the annually first rainy season(April to June),the modulating effect of the activity of intraseasonal oscillations propagating eastward along the equator(MJO) on the June precipitation in Guangdong is different from that in other months. The most indicative effect of MJO on positive(negative) anomalous precipitation over the whole or most of the province is phase 3(phase 6) of strong MJO events in Junes. A Northwest Pacific subtropical high intensifies and extends westward during phase 3. Water vapor transporting along the edge of the subtropical high from Western Pacific enhances significantly the water vapor flux over Guangdong, resulting in the enhancement of the precipitation. The condition is reverse during phase 6. The mechanism for which the subtropical high intensifies and extends westward during phase 3 is related to the atmospheric response to the asymmetric heating over the eastern Indian Ocean. Analyses of two cases of sustained strong rainfall of Guangdong in June 2010 showed that both of them are closely linked with a MJO state which is both strong and in phase 3, besides the effect from a westerly trough. It is argued further that the MJO activity is indicative of strong rainfall of Guangdong in June. The results in the present work are helpful in developing strategies for forecasting severe rainfall in Guangdong and extending, combined with the outputs of dynamic forecast models, the period of forecasting validity.展开更多
This study investigates the influences of boreal summer intraseasonal oscillation(BSISO), which originates from the equatorial Indian Ocean and prevails over the Indo-Pacific region, on precipitation over Southeast Ch...This study investigates the influences of boreal summer intraseasonal oscillation(BSISO), which originates from the equatorial Indian Ocean and prevails over the Indo-Pacific region, on precipitation over Southeast China, including South China and Yangtze River Valley. The results indicate that the BSISO-related precipitation anomalies are remarkably different between early summer(May–June) and late summer(July–August). The BSISO-related precipitation anomalies tend to appear more northward in late summer in comparison with early summer. Accordingly, the BSISO is significantly related to precipitation anomalies over South China during many phases in early summer but related to very weak anomalies during all the phases in late summer. Such northward shifts of precipitation anomalies from early summer to late summer are clearest during phases 4 and 7, when the lower-tropospheric anticyclonic and cyclonic circulation anomalies dominate over the subtropical western North Pacific, respectively. Finally, we explain the differences between early and late summers through the seasonal northward migration of climatological equivalent potential temperature gradient, which is located in the South China during early summer but migrates northward to the YRV during late summer.展开更多
Using the daily average outgoing longwave radiation and NCEP/NCAR reanalysis data in boreal summer(Mays to Octobers)from 1979 to 2007,the propagating characteristics of convection intraseasonal oscillations(ISOs)in th...Using the daily average outgoing longwave radiation and NCEP/NCAR reanalysis data in boreal summer(Mays to Octobers)from 1979 to 2007,the propagating characteristics of convection intraseasonal oscillations(ISOs)in the Asian-western Pacific(AWP)region and the relationship between tropical synoptic waves and ISOs are examined by means of finite-domain wavenumber-frequency energy spectrum analysis and lagged linear regression technique.The results are shown as follows.(1)The AWP ISOs propagate both eastward and westward,showing seasonality and regionality.The ISOs propagate eastward with a period of 30 to 60 days over equatorial regions in the whole AWP region,while the westward propagation occurs over 10 to 20°N western Pacific or in the late summers(August,September and October) with periods of 20 to 40 days.The ISOs eastward propagation mainly occurs in primary summers while the westward propagation enhances in late summers.(2)Deep ISO convections associate with westerly and cyclonic circulation anomalies that first form in the Indian Ocean,propagate eastward to the dateline in the Pacific and then turn northwestward.The ISOs convections show northwestward propagating characteristics in the western North Pacific.(3)The ISOs link with the tropical synoptic waves closely.Both convection signals,though with different spatio-temporal scale,enhance simutaneously in the northwestern Pacific,and the ISOs facilitate the forming of a cluster of tropical cyclones(TCs),while a cluster of TCs convection becomes one portion of the northwestward ISOs.展开更多
Comparative analysis is carried out by using finite-domain power spectrum and lagged regression methods for the propagating characteristics and air-sea interaction processes of intraseasonal oscillations (ISOs) in the...Comparative analysis is carried out by using finite-domain power spectrum and lagged regression methods for the propagating characteristics and air-sea interaction processes of intraseasonal oscillations (ISOs) in the Asia to western Pacific (AWP) region during the boreal summer between the active and inactive tropical cyclone (TC) years from 1979 to 2004.The results show as follows.(1) There exist more significant eastward propagating characteristics of the ISO in the active TC years over the whole AWP region.The ISOs of convection propagate zonally with more eastward extension in the years with active tropical cyclone activities,during which the 20-60-day period is strengthened,western Pacific becomes an area with evident characteristics of the propagation that is closely related to TC activities.(2) The air-sea interaction processes are the same in both active and inactive TC years,and the energy exchanges between the air and the sea play a role in maintaining the northwestward propagation of ISOs.(3) The air-sea interaction is more intensive in the active TC years than in the inactive ones.It is particularly true for the latent heat release by condensation as the result of convection,which may be one of the reasons resulting in significant differences in characteristics of ISOs between the active and inactive TC years.展开更多
By use of the May—September 1980—1986 ECMWF daily data of u,v,r and T at 850 hPa,a comparative analysis is performed of basic features of moisture transportation at seasonal mean,quasi-40-day,-biweekly,and-weekly os...By use of the May—September 1980—1986 ECMWF daily data of u,v,r and T at 850 hPa,a comparative analysis is performed of basic features of moisture transportation at seasonal mean,quasi-40-day,-biweekly,and-weekly oscillations,indicating that the seasonal mean transfer plays a decisive role in the moisture flux over the Asian monsoon region,displaying the integer of the monsoon systems there in character;that the transport related to these tropical intraseasonal oscillations are of equal importance in the monsoon period except the difference in their behaviors,i.e.,the transfer shows considerable relative independence in the South-and East-Asian systems;and that the transport at all these intraseasonal oscillations is found to be feeble at equatorial latitudes with little or no influence on each other for both hemispheres.展开更多
High-resolution satellite-derived data and NCEP-NCAR reanalysis data are used to investigate intraseasonal oscillations (ISO) over the tropical Indian Ocean.A composite evolution of the ISO life cycle is constructed...High-resolution satellite-derived data and NCEP-NCAR reanalysis data are used to investigate intraseasonal oscillations (ISO) over the tropical Indian Ocean.A composite evolution of the ISO life cycle is constructed,including the initiation,development,and propagation of rainfall anomalies over the tropical Indian Ocean.The characteristics of ISO over the tropical Indian Ocean are profoundly different before and after the onset of the Indian summer monsoon.Positive precipitation anomalies before monsoon onset appear one phase earlier than those after monsoon onset.Before monsoon onset,precipitation anomalies associated with ISO first initiate in the western tropical Indian Ocean and then propagate eastward along the equator.After monsoon onset,convective anomalies propagate northward over the Indian summer monsoon region after an initial eastward propagation over the equatorial Indian Ocean.Surface wind convergence and air-sea interaction play critical roles in initiating each new cycle of ISO convection.展开更多
The sensitivity of simulated tropical intraseasonal oscillations (ISO) to different cumulus parameterization schemes was analyzed using an atmospheric general circulation model (latest version-SAMIL2.2.3) developed at...The sensitivity of simulated tropical intraseasonal oscillations (ISO) to different cumulus parameterization schemes was analyzed using an atmospheric general circulation model (latest version-SAMIL2.2.3) developed at the Laboratory for Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) at the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences.Results show that the basic features of tropical climatological intraseasonal oscillations (CISO) can be captured using all three cumulus schemes.The CISO simulated by the Tiedtke scheme was found to be more realistic than that of the Manabe and Zhang-McFarlane schemes.The results of simulated transient intraseasonal oscillations (TISO) indicate that although the Tiedtke and the Zhang-McFarlane schemes in the new version SAMIL2.2.3 have been adjusted according to different problems,only the latter can simulate the eastward propagation of the 27-50-day TISO mode.It may be associated with the more realistic diabatic heating profile simulated by the Zhang-McFarlane scheme.In addition,the Manabe scheme in SAMIL2.2.3 is the same as that in the prior version SAMIL2.08.However,some aspects of the physical process,such as the radiation scheme and aerosol condition,have been changed.Conversely the eastward propagation from 100°E to the west of the tropical 27-50-day TISO mode only can be simulated using the Manabe scheme of SAMIL 2.08.Consequently,not all the improvements of physical parameterization schemes work well in every respect.The coordinated developments between dynamic frame and physical processes,and among different physical processes,are important methods that may be used to improve the model.展开更多
Based on the NCEP/NCAR reanalysis I daily data from 1958 to 2002,climatic characteristics of the 30-60-day intraseasonal oscillations(ISOs) of the zonal wind(u),meridional wind(v),and geopotential height(h) ov...Based on the NCEP/NCAR reanalysis I daily data from 1958 to 2002,climatic characteristics of the 30-60-day intraseasonal oscillations(ISOs) of the zonal wind(u),meridional wind(v),and geopotential height(h) over global areas and especially the ISO of v over the subtropical northern Pacific are analyzed using the space-time spectrum analysis and wavelet transform methods.The results show that the ISO of v is very different from those of u and h,with the former representing the meridional low-frequency disturbances,which are the most active in the subtropics and mid-high latitudes,but very weak in the tropics.In the subtropical Northern Hemisphere,the energies of the ISOs of u and h are both concentrated on the waves with wave number of 1 and periods of 30-60 days,while the main energy of the ISO of v is concentrated on the waves with wave numbers of 4-6 and periods of 30-60 and 70-90 days.The westward propagating energies for the 30-60-day oscillations of u,v,and h are all stronger than the eastward propagating energies in the subtropics.In addition,the ISO of v is the strongest(weakest) in summer (winter) over the subtropics of East Asia and northwestern Pacific,while the situation is reversed over the subtropical northeastern Pacific,revealing a "seesaw" of the ISO intensity with seasons over the subtropics from the northwestern to northeastern Pacific.In the subtropical northwestern Pacific,the interannual and interdecadal changes of the ISO for v at 850 hPa indicate that its activities are significantly strong during 1958-1975,while obviously weak during 1976-1990,and are the strongest during 1991-2000,and its spectral energy is obviously abnormal but ruleless during the ENSO periods.However,in the 2-7-yr bandpass filtering series,the interannual changes of the v ISO over the subtropical northwestern Pacific contain distinct ENSO signals.And in the 9-yr low-pass filtering series,the v ISO changes over the subtropical northwestern Pacific are significantly out of phase with the changes of the Nino-3.4 SST,whereas the v ISO changes in the subtropical northeastern Pacific are significantly in phase with the changes of the Nino-3.4 SST.展开更多
The southeastern China(SEC)forest is an important terrestrial biospheric carbon sink in the global carbon cycle,with its total net ecosystem exchange(NEE)accounting for about 3.2%of the global forest NEE.The prevailin...The southeastern China(SEC)forest is an important terrestrial biospheric carbon sink in the global carbon cycle,with its total net ecosystem exchange(NEE)accounting for about 3.2%of the global forest NEE.The prevailing atmospheric intraseasonal oscillations(ISOs)over East Asia strongly modulate climatic conditions over the SEC during spring and summer,thus leading to significant ISOs in the NEE of the SEC forest.As atmospheric ISOs show strong seasonality,this study examined the distinctive impacts of atmospheric ISOs on the NEE of the SEC forest between spring and summer.During spring,the vertical coupling of 10–30-d atmospheric ISOs in the lower and upper troposphere leads to strong 10‒30-d ISOs of solar radiation and temperature over the SEC.The 10‒30-d ISOs of solar radiation and temperature further result in the 10‒30-d ISOs of gross primary productivity(GPP)and terrestrial ecosystem respiration(TER).With the covariation in GPP and TER,the NEE of the SEC forest exhibits significant 10‒30-d ISOs.In contrast,the intraseasonal variations in climatic conditions over the SEC are associated with the 15‒60-d tropical atmospheric ISO during summer.While the induced 15‒60-d ISO of solar radiation leads to that of GPP,the induced 15‒60-d ISO of temperature is small and less effective;thus,the 15‒60-d ISO of NEE mainly originates from that of GPP.展开更多
Using the ECMWF reanalysis daily 200-hPa wind data during the two 20-yr periods from 1958 to 1977 and from 1980 to 1999, the characteristics and changes of Intraseasonal Oscillations (ISO) in the two periods associa...Using the ECMWF reanalysis daily 200-hPa wind data during the two 20-yr periods from 1958 to 1977 and from 1980 to 1999, the characteristics and changes of Intraseasonal Oscillations (ISO) in the two periods associated with global warming are analyzed and compared in this study. It is found that during the last 20 years, the ISO has weakened in the central equatorial Pacific Ocean, but becomes more active in the central Indian Ocean and the Bay of Bengal; under the background of the global warming, increase in the amplitude of ISO intensity suggests that the ISO has become more active than before, with an obvious seasonal cycle, i.e., strong during winter and spring, but weak during summer and autumn; the energy of the upper tropospheric zonal winds has more concentrated in wave numbers 1-3, and the frequency of ISO tended to increase. Comparison between the results of control experiment and CO2 increase (1% per year) experiment of FGOALS-1.0g (developed at LASG) with the first and second 20-yr observations, is also performed, respectively. The comparative results show that the spatial structure of the ISO was well reproduced, but the strength of ISO was underestimated. On the basis of space-time spectral analysis, it is found that the simulated ISO contains too much high frequency waves, leading to the underestiniation of ISO intensity due to the dispersion of ISO energy. However, FGOALS-1.0g captured the salient features of ISO under the global warming background by two contrast experiments, such as the vitality and frequency-increasing of ISO in the central Indian Ocean and the Bay of Bengal.展开更多
Changes in the activities of the Boreal Summer Intraseasonal Oscillation(BSISO)at the end of 21st century under the SSP5-8.5 scenario are assessed by adopting 17 CMIP6 models and the weak-temperature-gradient assumpti...Changes in the activities of the Boreal Summer Intraseasonal Oscillation(BSISO)at the end of 21st century under the SSP5-8.5 scenario are assessed by adopting 17 CMIP6 models and the weak-temperature-gradient assumption.Results show that the intraseasonal variations become more structured.The BSISO-related precipitation anomaly shows a larger zonal scale and propagates further northward.However,there is no broad agreement among models on the changes in the eastward and northward propagation speeds and the frequency of individual phases.In the western North Pacific(WNP),the BSISO precipitation variance is significantly increased,at 4.62%K^(−1),due to the significantly increased efficiency of vertical moisture transport per unit of BSISO apparent heating.The vertical velocity variance is significantly decreased,at−3.51%K^(−1),in the middle troposphere,due to the significantly increased mean-state static stability.Changes in the lower-level zonal wind variance are relatively complex,with a significant increase stretching from the northwestern to southeastern WNP,but the opposite in other regions.This is probably due to the combined impacts of the northeastward shift of the BSISO signals and the reduced BSISO vertical velocity variance under global warming.Changes in strong and normal BSISO events in the WNP are also compared.They show same-signed changes in precipitation and large-scale circulation anomalies but opposite changes in the vertical velocity anomalies.This is probably because the precipitation anomaly of strong(normal)events changes at a rate much larger(smaller)than that of the meanstate static stability,causing enhanced(reduced)vertical motion.展开更多
This study utilizes daily Asian Precipitation–Highly-Resolved Observational Data Integration Towards Evaluation(APHRODITE)gridded rainfall and the U.S.National Centers for Environmental PredictionDepartment of Ener...This study utilizes daily Asian Precipitation–Highly-Resolved Observational Data Integration Towards Evaluation(APHRODITE)gridded rainfall and the U.S.National Centers for Environmental PredictionDepartment of Energy reanalysis II products to examine the intraseasonal oscillations(ISOs)of rainfall over Eastern China during each summer of 1996,2002,and 2006.These three cases represent three typical spatial patterns of intraseasonal rainfall anomalies over Eastern China,with the strongest intraseasonal rainfall occurring over the middle and lower Yangtze Basin,southern Yangtze Basin,and Southeast China,respectively.The intraseasonal rainfall anomalies over Eastern China are dominated by both 30–60-and 10–20-day ISOs in each summer and are further modulated by the boreal summer ISOs(BSISOs)over the entire Asian summer monsoon region.The objective of this study is thus to apply the Bayesian wavelet-banding(WB)scheme to predicting intraseasonal rainfall over Eastern China.Several key factors associated with BSISOs are selected as predictors to experimentally develop a 15-day-lead statistical forecast.The forecast results show promise for the intraseasonal rainfall anomalies over Eastern China.Correlations generally greater than or equal to 0.6 are noted between the observed and predicted ISOs of rainfall over the major intraseasonal activity centers during each of the three summers.Such a high forecasting skill on intraseasonal timescales over various areas in Eastern China demonstrates the general usefulness of the WB scheme.展开更多
The effects of air-sea coupling over the tropical Indian Ocean(TIO) on the eastward propagating boreal winter intraseasonal oscillation(MJO) are investigated by comparing a fully coupled and a partially decoupled ...The effects of air-sea coupling over the tropical Indian Ocean(TIO) on the eastward propagating boreal winter intraseasonal oscillation(MJO) are investigated by comparing a fully coupled and a partially decoupled Indian Ocean experiment using the SINTEX-F coupled model.Air-sea coupling over the TIO significantly enhances the intensity of the eastward propagations of the MJO along the5°-10°S zonal areas.The zonal asymmetry of the SST anomaly(SSTA) is responsible for the enhanced eastward propagation.A positive SSTA appears to the east of the MJO convection,which results in the boundary layer moisture convergence and positively feeds back to the MJO convection.In addition,the air-sea interaction effect on the eastward propagation of the MJO is related to the interannual variations of the TIO.Air-sea coupling enhances(reduces) the eastward-propagating spectrum during the negative Indian Ocean dipole mode and positive Indian Ocean basin mode.Such phase dependence is attributed to the role of the background mean westerly in affecting the wind-evaporation-SST feedback.Air-sea coupling(decoupling) enhances(reduces) the zonal asymmetry of the low-level specific humidity,and thus the eastward propagation spectrum of the MJO.展开更多
In this paper, the evolution of intraseasonal oscillation over the South China Sea and tropical western Pacific area and its effect to the summer rainfall in the southern China are studied based on the ECMWF data and ...In this paper, the evolution of intraseasonal oscillation over the South China Sea and tropical western Pacific area and its effect to the summer rainfall in the southern China are studied based on the ECMWF data and TBB data) analyses. A very low-frequency waves exist in the tropics and play an important role in dominating intraseasonal oscillation and lead to special seasonal variation of intraseasonal oscillation over the South China Sea/tropical western Pacific area. The intraseasonal oscillation (convection) over the South China Sea and tropical western Pacific area is closely related to the summer rainfall (convection) in the southern China. Their relationship seems to be a seesaw feature, and this relationship resulting from the different pattern of convection in those two regions is caused by the differnt type of local meridional circulation.展开更多
The intraseasonal oscillation (ISO) is studied during the severe flood and drought years of the Changjiang-Huaihe River Basin with the NCEP/NCAR reanalysis data and the precipitation data in China. The results show th...The intraseasonal oscillation (ISO) is studied during the severe flood and drought years of the Changjiang-Huaihe River Basin with the NCEP/NCAR reanalysis data and the precipitation data in China. The results show that the upper-level (200 hPa) ISO pattern for severe flood (drought) is characterized by an anticyclonic (cyclonic) circulation over the southern Tibetan Plateau and a cyclonic (anti-cyclonic) circulation over the northern Tibetan Plateau. The lower-level (850 hPa) ISO pattern is characterized by an anticyclonic (cyclonic) circulation over the area south of the Changjiang River, the South China Sea, and the Western Pacific, and a cyclonic (anticyclonic) circulation from the area north of the Changjiang River to Japan. These low-level ISO circulation patterns are the first modes of the ISO wind field according to the vector EOF expansion with stronger amplitude of the EOF1 time coefficient in severe flood years than in severe drought years. The analyses also reveal that at 500 hPa and 200 hPa, the atmospheric ISO activity over the Changjiang-Huaihe River basin, North China, and the middle-high latitudes north of China is stronger for severe flood than for severe drought. The ISO meridional wind over the middle-high latitude regions can propagate southwards and meet with the northward propagating ISO meridional wind from lower latitude regions over the Changjiang-Huaihe River Basin during severe flood years, but not during severe drought years.展开更多
The circulation pattern corresponding to the strong / weak summer monsoon in the South China Sea (SCS) region and the associated characteristics of the abnormal rainfall in Eastern China have been studied by using the...The circulation pattern corresponding to the strong / weak summer monsoon in the South China Sea (SCS) region and the associated characteristics of the abnormal rainfall in Eastern China have been studied by using the NECP reanalysis data and precipitation data in China. The results show that the climate variations in China caused by the strong / weak summer monsoon are completely different (even in opposite phase). The analyses of atmospheric intraseasonal oscillation (ISO) activity showed that the atmospheric ISO at 850 hPa near the SCS region is strong (weak) corresponding to the strong (weak) SCS summer monsoon. And the analyses of the circulation pattern of the atmospheric ISO showed that the strong / weak SCS summer monsoon circulation (200 hPa and 850 hPa) result mainly from abnormal atmospheric ISO. This study also reveals that the atmospheric ISO variability in the South China Sea region is usually at opposite phase with one in the Jiang-huai River basin. For example, strong (weak) atmospheric ISO in the SCS region corresponds to the weak (strong) atmospheric ISO in the Jiang-huai River basin. As to the intensity of atmospheric ISO, it is generally exhibits the local exciting characteristics, the longitudinal propagation is weak. Key words The SCS summer monsoon - Atmospheric intraseasonal oscillation - Circulation pattern This was supported by National Key Basic Science Program in China (G1998040903) and State Key Project-SCSMEX.展开更多
The performances of four Chinese AGCMs participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in the simulation of the boreal summer intraseasonal oscillation (BSISO) are assessed. The authors ...The performances of four Chinese AGCMs participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in the simulation of the boreal summer intraseasonal oscillation (BSISO) are assessed. The authors focus on the major characteristics of BSISO: the intensity, significant period, and propagation. The results show that the four AGCMs can reproduce boreal summer intraseasonal signals of precipitation; however their limitations are also evident. Compared with the Climate Prediction Center Merged Analysis of Precipitation (CMAP) data, the models underestimate the strength of the intraseasonal oscillation (ISO) over the eastern equatorial Indian Ocean (IO) during the boreal summer (May to October), but overestimate the intraseasonal variability over the western Pacific (WP). In the model results, the westward propagation dominates, whereas the eastward propagation dominates in the CMAP data. The northward propagation in these models is tilted southwest-northeast, which is also different from the CMAP result. Thus, there is not a northeast-southwest tilted rain belt revolution off the equator during the BSISO's eastward journey in the models. The biases of the BSISO are consistent with the summer mean state, especially the vertical shear. Analysis also shows that there is a positive feedback between the intraseasonal precipitation and the summer mean precipitation. The positive feedback processes may amplify the models' biases in the BSISO simulation.展开更多
Simulations of tropical intraseasonal oscillation (TISO) in SAMIL, the Spectral Atmospheric Model from the Institute of Atmospheric Physics (IAP) State Key Laboratory of Numerical Modeling for Atmospheric Sciences...Simulations of tropical intraseasonal oscillation (TISO) in SAMIL, the Spectral Atmospheric Model from the Institute of Atmospheric Physics (IAP) State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) coupled and uncoupled general circulation models were comprehensively evaluated in this study. Compared to the uncoupled model, the atmosphere-ocean coupled model improved the TISO simulation in the following aspects: (1) the spectral intensity for the 30-80-day peak eastward periods was more realistic; (2) the eastward propagation signals over western Pacific were stronger; and (3) the variance distribution and stronger signals of Kelvin waves and mixed Rossby gravity waves were more realistic. Better performance in the coupled run was assumed to be associated with a better mean state and a more realistic relationship between precipitation and SST. In both the coupled and uncoupled runs, the unrealistic simulation of the eastward propagation over the equatorial Indian Ocean might have been associated with the biases of the precipitation mean state over the Indian Ocean, and the unrealistic split of maximum TISO precipitation variance over the Pacific might have corresponded to the exaggeration of the double Intertropical Convergence Zone (ITCZ) structure in precipitation mean state. However, whether a better mean state leads to better TISO activity remains questionable. Notably, the northward propagation over the Indian Ocean during summer was not improved in the mean lead-lag correlation analysis, but case studies have shown some strong cases to yield remarkably realistic northward propagation in coupled runs.展开更多
The 1999 East Asian summer monsoon was very unusual for its weak northward advance and remarkably anomalous climate conditions. The monsoonal southwesterly airflow and related rain belt in East Asia were blocked south...The 1999 East Asian summer monsoon was very unusual for its weak northward advance and remarkably anomalous climate conditions. The monsoonal southwesterly airflow and related rain belt in East Asia were blocked south of the Yangtze River Valley. The monsoonal airflow and major moisture transport conduct shifted eastward and turned northward to Japan from the tropical western Pacific rather than to East China from the South China Sea (SCS) as in normal years. Severe and prolonged drought occurred over extensive areas of North China and heavy precipitation in South China and Japan. The investigation on the possible intrinsic mechanisms related to such an anomalous monsoon year has shown that the unique behavior of intraseasonal oscillation may play an essential role during this process. During this year, the northward propagation of 30-60-day anomalous low-level cyclone/anticyclone collapsed in the region around 20°N and did not extend beyond the latitudes of the Yangtze River basin due to the barrier of strong cold air intrusion from the mid-latitudes. The southwesterly moisture flux on the northwestern flank of the anticyclonic moisture transport system in the western North Pacific, which was regulated by the northward shift of 30-60-day cyclonic/anticyclonic moisture transport, also did not reach the region north of 30°N as well. Under this circumstance, the weak northward advance of the monsoon westerlies and associated northward moisture transport could not arrive in North China and led to the severe droughts there in 1999. The SCS and South China were mostly affected by the airflow in the southern and northern flanks of the same 30-60-day cyclones or anticyclones, respectively, and thus controlled by the nearly reverse zonal wind and moisture convergent/divergent conditions. The rainfall in the SCS and South China showed out-of-phase oscillation through the transient local Hadley circulation, with the rainfall maximum occurring in the SCS (South China) when the 30-60-day anticyclone (cyclone) reached its peak phase.展开更多
基金supported by the National Basic Research Program of China(Grant No2010CB950403)by the National Natural Science Foundation of China(Grant No.U0933603)
文摘The features of 30-60-day convection oscillations over the subtropical western North Pacific (WNP) were investigated, along with the degree of tropical-subtropical linkage between the oscillations over the WNP during summer 1998. It was found that 30-60-day oscillations were extremely strong in that summer over both the subtropical and tro]~ical WNP, providing a unique opportunity to study the behavior of subtropical oscillations and their relationship to tropical oscillations. Further analyses indicated that 30-60-day oscillations propagate westwards over the subtropical WNP and reach eastern China. In addition, 30-60-day oscillations in the subtropics are affected by those over the South China Sea (SCS) and tropical WNP through two mechanisms: (1) direct propagation from the tropics into the subtropics; and (2) a seesaw pattern between the tropics and subtropics, with the latter being predominant.
基金Key National Science Research Program(2014CB953901)Science and Technology Planning Project fo Guangdong Province(2012A061400012)+1 种基金Natural Science Foundation of China(41575043,41205069)Project for China Meteorological Administration(GYHY201406009)
文摘The impact of tropical intraseasonal oscillations on the precipitation of Guangdong in Junes and its physical mechanism are analyzed using 30-yr(1979 to 2008), 86-station observational daily precipitation of Guangdong and daily atmospheric data from NCEP-DOE Reanalysis. It is found that during the annually first rainy season(April to June),the modulating effect of the activity of intraseasonal oscillations propagating eastward along the equator(MJO) on the June precipitation in Guangdong is different from that in other months. The most indicative effect of MJO on positive(negative) anomalous precipitation over the whole or most of the province is phase 3(phase 6) of strong MJO events in Junes. A Northwest Pacific subtropical high intensifies and extends westward during phase 3. Water vapor transporting along the edge of the subtropical high from Western Pacific enhances significantly the water vapor flux over Guangdong, resulting in the enhancement of the precipitation. The condition is reverse during phase 6. The mechanism for which the subtropical high intensifies and extends westward during phase 3 is related to the atmospheric response to the asymmetric heating over the eastern Indian Ocean. Analyses of two cases of sustained strong rainfall of Guangdong in June 2010 showed that both of them are closely linked with a MJO state which is both strong and in phase 3, besides the effect from a westerly trough. It is argued further that the MJO activity is indicative of strong rainfall of Guangdong in June. The results in the present work are helpful in developing strategies for forecasting severe rainfall in Guangdong and extending, combined with the outputs of dynamic forecast models, the period of forecasting validity.
基金supported by the National Natural Science Foundation of China (Grant No. 41721004)。
文摘This study investigates the influences of boreal summer intraseasonal oscillation(BSISO), which originates from the equatorial Indian Ocean and prevails over the Indo-Pacific region, on precipitation over Southeast China, including South China and Yangtze River Valley. The results indicate that the BSISO-related precipitation anomalies are remarkably different between early summer(May–June) and late summer(July–August). The BSISO-related precipitation anomalies tend to appear more northward in late summer in comparison with early summer. Accordingly, the BSISO is significantly related to precipitation anomalies over South China during many phases in early summer but related to very weak anomalies during all the phases in late summer. Such northward shifts of precipitation anomalies from early summer to late summer are clearest during phases 4 and 7, when the lower-tropospheric anticyclonic and cyclonic circulation anomalies dominate over the subtropical western North Pacific, respectively. Finally, we explain the differences between early and late summers through the seasonal northward migration of climatological equivalent potential temperature gradient, which is located in the South China during early summer but migrates northward to the YRV during late summer.
基金National Basic Research Program of China(973 Program)(2009CB421503)Natural Science Foundation of China(41075073+2 种基金40775058)Tropical Marine&Meteorologic Science Foundation(201103)Natural Science Foundation of Guangxi(2010GXNSFA013010)
文摘Using the daily average outgoing longwave radiation and NCEP/NCAR reanalysis data in boreal summer(Mays to Octobers)from 1979 to 2007,the propagating characteristics of convection intraseasonal oscillations(ISOs)in the Asian-western Pacific(AWP)region and the relationship between tropical synoptic waves and ISOs are examined by means of finite-domain wavenumber-frequency energy spectrum analysis and lagged linear regression technique.The results are shown as follows.(1)The AWP ISOs propagate both eastward and westward,showing seasonality and regionality.The ISOs propagate eastward with a period of 30 to 60 days over equatorial regions in the whole AWP region,while the westward propagation occurs over 10 to 20°N western Pacific or in the late summers(August,September and October) with periods of 20 to 40 days.The ISOs eastward propagation mainly occurs in primary summers while the westward propagation enhances in late summers.(2)Deep ISO convections associate with westerly and cyclonic circulation anomalies that first form in the Indian Ocean,propagate eastward to the dateline in the Pacific and then turn northwestward.The ISOs convections show northwestward propagating characteristics in the western North Pacific.(3)The ISOs link with the tropical synoptic waves closely.Both convection signals,though with different spatio-temporal scale,enhance simutaneously in the northwestern Pacific,and the ISOs facilitate the forming of a cluster of tropical cyclones(TCs),while a cluster of TCs convection becomes one portion of the northwestward ISOs.
基金Natural Development and Plan for Key Fundamental Research (2009CB421505)National Natural Science Foundation (40775058+2 种基金41075073)Tropical Marine & Meteorological Science Foundation (201103)Natural Science Foundation of Guangxi (2010GXNSFA013010)
文摘Comparative analysis is carried out by using finite-domain power spectrum and lagged regression methods for the propagating characteristics and air-sea interaction processes of intraseasonal oscillations (ISOs) in the Asia to western Pacific (AWP) region during the boreal summer between the active and inactive tropical cyclone (TC) years from 1979 to 2004.The results show as follows.(1) There exist more significant eastward propagating characteristics of the ISO in the active TC years over the whole AWP region.The ISOs of convection propagate zonally with more eastward extension in the years with active tropical cyclone activities,during which the 20-60-day period is strengthened,western Pacific becomes an area with evident characteristics of the propagation that is closely related to TC activities.(2) The air-sea interaction processes are the same in both active and inactive TC years,and the energy exchanges between the air and the sea play a role in maintaining the northwestward propagation of ISOs.(3) The air-sea interaction is more intensive in the active TC years than in the inactive ones.It is particularly true for the latent heat release by condensation as the result of convection,which may be one of the reasons resulting in significant differences in characteristics of ISOs between the active and inactive TC years.
基金This work is supported by National Division of Critical Major Subjects of Basic Research of China.
文摘By use of the May—September 1980—1986 ECMWF daily data of u,v,r and T at 850 hPa,a comparative analysis is performed of basic features of moisture transportation at seasonal mean,quasi-40-day,-biweekly,and-weekly oscillations,indicating that the seasonal mean transfer plays a decisive role in the moisture flux over the Asian monsoon region,displaying the integer of the monsoon systems there in character;that the transport related to these tropical intraseasonal oscillations are of equal importance in the monsoon period except the difference in their behaviors,i.e.,the transfer shows considerable relative independence in the South-and East-Asian systems;and that the transport at all these intraseasonal oscillations is found to be feeble at equatorial latitudes with little or no influence on each other for both hemispheres.
基金Supported by the National Basic Research and Development(973)Program of China(2012CB417205)National NaturalScience Foundation of China(41221064)Basic Research Fund of the Chinese Academy of Meteorological Sciences(2009Y006and 2010Z003)
文摘High-resolution satellite-derived data and NCEP-NCAR reanalysis data are used to investigate intraseasonal oscillations (ISO) over the tropical Indian Ocean.A composite evolution of the ISO life cycle is constructed,including the initiation,development,and propagation of rainfall anomalies over the tropical Indian Ocean.The characteristics of ISO over the tropical Indian Ocean are profoundly different before and after the onset of the Indian summer monsoon.Positive precipitation anomalies before monsoon onset appear one phase earlier than those after monsoon onset.Before monsoon onset,precipitation anomalies associated with ISO first initiate in the western tropical Indian Ocean and then propagate eastward along the equator.After monsoon onset,convective anomalies propagate northward over the Indian summer monsoon region after an initial eastward propagation over the equatorial Indian Ocean.Surface wind convergence and air-sea interaction play critical roles in initiating each new cycle of ISO convection.
基金supported by National Basic Research Program of China (Grant Nos. 2010CB951703 and 2009CB421403)Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KZCX2-YW-Q11-01 and KZCX2-YW-BR-14) "Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issue" of the Chinese Academy of Sciences (Grant No. XDA05110303)
文摘The sensitivity of simulated tropical intraseasonal oscillations (ISO) to different cumulus parameterization schemes was analyzed using an atmospheric general circulation model (latest version-SAMIL2.2.3) developed at the Laboratory for Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) at the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences.Results show that the basic features of tropical climatological intraseasonal oscillations (CISO) can be captured using all three cumulus schemes.The CISO simulated by the Tiedtke scheme was found to be more realistic than that of the Manabe and Zhang-McFarlane schemes.The results of simulated transient intraseasonal oscillations (TISO) indicate that although the Tiedtke and the Zhang-McFarlane schemes in the new version SAMIL2.2.3 have been adjusted according to different problems,only the latter can simulate the eastward propagation of the 27-50-day TISO mode.It may be associated with the more realistic diabatic heating profile simulated by the Zhang-McFarlane scheme.In addition,the Manabe scheme in SAMIL2.2.3 is the same as that in the prior version SAMIL2.08.However,some aspects of the physical process,such as the radiation scheme and aerosol condition,have been changed.Conversely the eastward propagation from 100°E to the west of the tropical 27-50-day TISO mode only can be simulated using the Manabe scheme of SAMIL 2.08.Consequently,not all the improvements of physical parameterization schemes work well in every respect.The coordinated developments between dynamic frame and physical processes,and among different physical processes,are important methods that may be used to improve the model.
基金Supported jointly by the National Basic Research Program of China(2006CB403606)the National Natural Science Foundation of China(Grant Nos.40575027 and 40905035)the National Non-Profit Public-Interest Research Project(Grant No. GYHY200806004)
文摘Based on the NCEP/NCAR reanalysis I daily data from 1958 to 2002,climatic characteristics of the 30-60-day intraseasonal oscillations(ISOs) of the zonal wind(u),meridional wind(v),and geopotential height(h) over global areas and especially the ISO of v over the subtropical northern Pacific are analyzed using the space-time spectrum analysis and wavelet transform methods.The results show that the ISO of v is very different from those of u and h,with the former representing the meridional low-frequency disturbances,which are the most active in the subtropics and mid-high latitudes,but very weak in the tropics.In the subtropical Northern Hemisphere,the energies of the ISOs of u and h are both concentrated on the waves with wave number of 1 and periods of 30-60 days,while the main energy of the ISO of v is concentrated on the waves with wave numbers of 4-6 and periods of 30-60 and 70-90 days.The westward propagating energies for the 30-60-day oscillations of u,v,and h are all stronger than the eastward propagating energies in the subtropics.In addition,the ISO of v is the strongest(weakest) in summer (winter) over the subtropics of East Asia and northwestern Pacific,while the situation is reversed over the subtropical northeastern Pacific,revealing a "seesaw" of the ISO intensity with seasons over the subtropics from the northwestern to northeastern Pacific.In the subtropical northwestern Pacific,the interannual and interdecadal changes of the ISO for v at 850 hPa indicate that its activities are significantly strong during 1958-1975,while obviously weak during 1976-1990,and are the strongest during 1991-2000,and its spectral energy is obviously abnormal but ruleless during the ENSO periods.However,in the 2-7-yr bandpass filtering series,the interannual changes of the v ISO over the subtropical northwestern Pacific contain distinct ENSO signals.And in the 9-yr low-pass filtering series,the v ISO changes over the subtropical northwestern Pacific are significantly out of phase with the changes of the Nino-3.4 SST,whereas the v ISO changes in the subtropical northeastern Pacific are significantly in phase with the changes of the Nino-3.4 SST.
基金funded by the National Natural Science Foundation of China(41905076,42175076)the China Postdoctoral Science Foundation(2021M693471).
文摘The southeastern China(SEC)forest is an important terrestrial biospheric carbon sink in the global carbon cycle,with its total net ecosystem exchange(NEE)accounting for about 3.2%of the global forest NEE.The prevailing atmospheric intraseasonal oscillations(ISOs)over East Asia strongly modulate climatic conditions over the SEC during spring and summer,thus leading to significant ISOs in the NEE of the SEC forest.As atmospheric ISOs show strong seasonality,this study examined the distinctive impacts of atmospheric ISOs on the NEE of the SEC forest between spring and summer.During spring,the vertical coupling of 10–30-d atmospheric ISOs in the lower and upper troposphere leads to strong 10‒30-d ISOs of solar radiation and temperature over the SEC.The 10‒30-d ISOs of solar radiation and temperature further result in the 10‒30-d ISOs of gross primary productivity(GPP)and terrestrial ecosystem respiration(TER).With the covariation in GPP and TER,the NEE of the SEC forest exhibits significant 10‒30-d ISOs.In contrast,the intraseasonal variations in climatic conditions over the SEC are associated with the 15‒60-d tropical atmospheric ISO during summer.While the induced 15‒60-d ISO of solar radiation leads to that of GPP,the induced 15‒60-d ISO of temperature is small and less effective;thus,the 15‒60-d ISO of NEE mainly originates from that of GPP.
基金Supported by the National Natural Science Foundation of China under Grant Nos.90211011 and 40231004the Science and Technology Department"Eleventh Five"programme under Grant No.2001BA611B01.
文摘Using the ECMWF reanalysis daily 200-hPa wind data during the two 20-yr periods from 1958 to 1977 and from 1980 to 1999, the characteristics and changes of Intraseasonal Oscillations (ISO) in the two periods associated with global warming are analyzed and compared in this study. It is found that during the last 20 years, the ISO has weakened in the central equatorial Pacific Ocean, but becomes more active in the central Indian Ocean and the Bay of Bengal; under the background of the global warming, increase in the amplitude of ISO intensity suggests that the ISO has become more active than before, with an obvious seasonal cycle, i.e., strong during winter and spring, but weak during summer and autumn; the energy of the upper tropospheric zonal winds has more concentrated in wave numbers 1-3, and the frequency of ISO tended to increase. Comparison between the results of control experiment and CO2 increase (1% per year) experiment of FGOALS-1.0g (developed at LASG) with the first and second 20-yr observations, is also performed, respectively. The comparative results show that the spatial structure of the ISO was well reproduced, but the strength of ISO was underestimated. On the basis of space-time spectral analysis, it is found that the simulated ISO contains too much high frequency waves, leading to the underestiniation of ISO intensity due to the dispersion of ISO energy. However, FGOALS-1.0g captured the salient features of ISO under the global warming background by two contrast experiments, such as the vitality and frequency-increasing of ISO in the central Indian Ocean and the Bay of Bengal.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42088101 and 41875099)。
文摘Changes in the activities of the Boreal Summer Intraseasonal Oscillation(BSISO)at the end of 21st century under the SSP5-8.5 scenario are assessed by adopting 17 CMIP6 models and the weak-temperature-gradient assumption.Results show that the intraseasonal variations become more structured.The BSISO-related precipitation anomaly shows a larger zonal scale and propagates further northward.However,there is no broad agreement among models on the changes in the eastward and northward propagation speeds and the frequency of individual phases.In the western North Pacific(WNP),the BSISO precipitation variance is significantly increased,at 4.62%K^(−1),due to the significantly increased efficiency of vertical moisture transport per unit of BSISO apparent heating.The vertical velocity variance is significantly decreased,at−3.51%K^(−1),in the middle troposphere,due to the significantly increased mean-state static stability.Changes in the lower-level zonal wind variance are relatively complex,with a significant increase stretching from the northwestern to southeastern WNP,but the opposite in other regions.This is probably due to the combined impacts of the northeastward shift of the BSISO signals and the reduced BSISO vertical velocity variance under global warming.Changes in strong and normal BSISO events in the WNP are also compared.They show same-signed changes in precipitation and large-scale circulation anomalies but opposite changes in the vertical velocity anomalies.This is probably because the precipitation anomaly of strong(normal)events changes at a rate much larger(smaller)than that of the meanstate static stability,causing enhanced(reduced)vertical motion.
基金jointly supported by the National Basic Research Program of China[grant numbers 2014CB953902,2012CB417203,and 2012CB955202]the Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010402]+2 种基金the National Natural Science Foundation of China[grant numbers 4117505941375087and 91537103]
文摘This study utilizes daily Asian Precipitation–Highly-Resolved Observational Data Integration Towards Evaluation(APHRODITE)gridded rainfall and the U.S.National Centers for Environmental PredictionDepartment of Energy reanalysis II products to examine the intraseasonal oscillations(ISOs)of rainfall over Eastern China during each summer of 1996,2002,and 2006.These three cases represent three typical spatial patterns of intraseasonal rainfall anomalies over Eastern China,with the strongest intraseasonal rainfall occurring over the middle and lower Yangtze Basin,southern Yangtze Basin,and Southeast China,respectively.The intraseasonal rainfall anomalies over Eastern China are dominated by both 30–60-and 10–20-day ISOs in each summer and are further modulated by the boreal summer ISOs(BSISOs)over the entire Asian summer monsoon region.The objective of this study is thus to apply the Bayesian wavelet-banding(WB)scheme to predicting intraseasonal rainfall over Eastern China.Several key factors associated with BSISOs are selected as predictors to experimentally develop a 15-day-lead statistical forecast.The forecast results show promise for the intraseasonal rainfall anomalies over Eastern China.Correlations generally greater than or equal to 0.6 are noted between the observed and predicted ISOs of rainfall over the major intraseasonal activity centers during each of the three summers.Such a high forecasting skill on intraseasonal timescales over various areas in Eastern China demonstrates the general usefulness of the WB scheme.
基金supported by the National Basic Research Program of China[grant number 2014CB953901],support from the National Basic Research Program of China[grant number 2015CB453200]the National Natural Science Foundation of China[grant numbers 41675096,41575043,41375095,and 41505067],the National Natural Science Foundation of China[grant numbers 41475084 and 41630423]
文摘The effects of air-sea coupling over the tropical Indian Ocean(TIO) on the eastward propagating boreal winter intraseasonal oscillation(MJO) are investigated by comparing a fully coupled and a partially decoupled Indian Ocean experiment using the SINTEX-F coupled model.Air-sea coupling over the TIO significantly enhances the intensity of the eastward propagations of the MJO along the5°-10°S zonal areas.The zonal asymmetry of the SST anomaly(SSTA) is responsible for the enhanced eastward propagation.A positive SSTA appears to the east of the MJO convection,which results in the boundary layer moisture convergence and positively feeds back to the MJO convection.In addition,the air-sea interaction effect on the eastward propagation of the MJO is related to the interannual variations of the TIO.Air-sea coupling enhances(reduces) the eastward-propagating spectrum during the negative Indian Ocean dipole mode and positive Indian Ocean basin mode.Such phase dependence is attributed to the role of the background mean westerly in affecting the wind-evaporation-SST feedback.Air-sea coupling(decoupling) enhances(reduces) the zonal asymmetry of the low-level specific humidity,and thus the eastward propagation spectrum of the MJO.
文摘In this paper, the evolution of intraseasonal oscillation over the South China Sea and tropical western Pacific area and its effect to the summer rainfall in the southern China are studied based on the ECMWF data and TBB data) analyses. A very low-frequency waves exist in the tropics and play an important role in dominating intraseasonal oscillation and lead to special seasonal variation of intraseasonal oscillation over the South China Sea/tropical western Pacific area. The intraseasonal oscillation (convection) over the South China Sea and tropical western Pacific area is closely related to the summer rainfall (convection) in the southern China. Their relationship seems to be a seesaw feature, and this relationship resulting from the different pattern of convection in those two regions is caused by the differnt type of local meridional circulation.
文摘The intraseasonal oscillation (ISO) is studied during the severe flood and drought years of the Changjiang-Huaihe River Basin with the NCEP/NCAR reanalysis data and the precipitation data in China. The results show that the upper-level (200 hPa) ISO pattern for severe flood (drought) is characterized by an anticyclonic (cyclonic) circulation over the southern Tibetan Plateau and a cyclonic (anti-cyclonic) circulation over the northern Tibetan Plateau. The lower-level (850 hPa) ISO pattern is characterized by an anticyclonic (cyclonic) circulation over the area south of the Changjiang River, the South China Sea, and the Western Pacific, and a cyclonic (anticyclonic) circulation from the area north of the Changjiang River to Japan. These low-level ISO circulation patterns are the first modes of the ISO wind field according to the vector EOF expansion with stronger amplitude of the EOF1 time coefficient in severe flood years than in severe drought years. The analyses also reveal that at 500 hPa and 200 hPa, the atmospheric ISO activity over the Changjiang-Huaihe River basin, North China, and the middle-high latitudes north of China is stronger for severe flood than for severe drought. The ISO meridional wind over the middle-high latitude regions can propagate southwards and meet with the northward propagating ISO meridional wind from lower latitude regions over the Changjiang-Huaihe River Basin during severe flood years, but not during severe drought years.
基金National Key Basic Science Program in China (G1998040903) State KeyProject-SCSMEX.
文摘The circulation pattern corresponding to the strong / weak summer monsoon in the South China Sea (SCS) region and the associated characteristics of the abnormal rainfall in Eastern China have been studied by using the NECP reanalysis data and precipitation data in China. The results show that the climate variations in China caused by the strong / weak summer monsoon are completely different (even in opposite phase). The analyses of atmospheric intraseasonal oscillation (ISO) activity showed that the atmospheric ISO at 850 hPa near the SCS region is strong (weak) corresponding to the strong (weak) SCS summer monsoon. And the analyses of the circulation pattern of the atmospheric ISO showed that the strong / weak SCS summer monsoon circulation (200 hPa and 850 hPa) result mainly from abnormal atmospheric ISO. This study also reveals that the atmospheric ISO variability in the South China Sea region is usually at opposite phase with one in the Jiang-huai River basin. For example, strong (weak) atmospheric ISO in the SCS region corresponds to the weak (strong) atmospheric ISO in the Jiang-huai River basin. As to the intensity of atmospheric ISO, it is generally exhibits the local exciting characteristics, the longitudinal propagation is weak. Key words The SCS summer monsoon - Atmospheric intraseasonal oscillation - Circulation pattern This was supported by National Key Basic Science Program in China (G1998040903) and State Key Project-SCSMEX.
基金supported by the National Basic Research and Development (973) Program of China (Grant No.2012CB955902)China Meteorological Special Project (Grant Nos.GYHY201206016 and GYHY 201406022)+1 种基金National Natural Science Foundation of China (Grant No.41125017)the Public science and technology research funds projects of ocean (Grant No.201105019-3)
文摘The performances of four Chinese AGCMs participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) in the simulation of the boreal summer intraseasonal oscillation (BSISO) are assessed. The authors focus on the major characteristics of BSISO: the intensity, significant period, and propagation. The results show that the four AGCMs can reproduce boreal summer intraseasonal signals of precipitation; however their limitations are also evident. Compared with the Climate Prediction Center Merged Analysis of Precipitation (CMAP) data, the models underestimate the strength of the intraseasonal oscillation (ISO) over the eastern equatorial Indian Ocean (IO) during the boreal summer (May to October), but overestimate the intraseasonal variability over the western Pacific (WP). In the model results, the westward propagation dominates, whereas the eastward propagation dominates in the CMAP data. The northward propagation in these models is tilted southwest-northeast, which is also different from the CMAP result. Thus, there is not a northeast-southwest tilted rain belt revolution off the equator during the BSISO's eastward journey in the models. The biases of the BSISO are consistent with the summer mean state, especially the vertical shear. Analysis also shows that there is a positive feedback between the intraseasonal precipitation and the summer mean precipitation. The positive feedback processes may amplify the models' biases in the BSISO simulation.
基金supported by"863" program (Grant No. 2010AA012305)"973" pro-gram (Grant Nos. 2012CB955401,2010CB950404 and 2012CB417203)+2 种基金the specialized Research Fund for the Doctoral Program of Higher Education (SRFDP)the National Natural Science Foundation of China (Grant No.41005036)the State Key Laboratory of Earth Surface Processes and Resource Ecology (Grant No. 2010ZY03)
文摘Simulations of tropical intraseasonal oscillation (TISO) in SAMIL, the Spectral Atmospheric Model from the Institute of Atmospheric Physics (IAP) State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) coupled and uncoupled general circulation models were comprehensively evaluated in this study. Compared to the uncoupled model, the atmosphere-ocean coupled model improved the TISO simulation in the following aspects: (1) the spectral intensity for the 30-80-day peak eastward periods was more realistic; (2) the eastward propagation signals over western Pacific were stronger; and (3) the variance distribution and stronger signals of Kelvin waves and mixed Rossby gravity waves were more realistic. Better performance in the coupled run was assumed to be associated with a better mean state and a more realistic relationship between precipitation and SST. In both the coupled and uncoupled runs, the unrealistic simulation of the eastward propagation over the equatorial Indian Ocean might have been associated with the biases of the precipitation mean state over the Indian Ocean, and the unrealistic split of maximum TISO precipitation variance over the Pacific might have corresponded to the exaggeration of the double Intertropical Convergence Zone (ITCZ) structure in precipitation mean state. However, whether a better mean state leads to better TISO activity remains questionable. Notably, the northward propagation over the Indian Ocean during summer was not improved in the mean lead-lag correlation analysis, but case studies have shown some strong cases to yield remarkably realistic northward propagation in coupled runs.
基金Acknowledgements. The study is partially supported by National Natural Science Foundation of China (Grant No. 40605020) and 973 Program 2006CB403604.
文摘The 1999 East Asian summer monsoon was very unusual for its weak northward advance and remarkably anomalous climate conditions. The monsoonal southwesterly airflow and related rain belt in East Asia were blocked south of the Yangtze River Valley. The monsoonal airflow and major moisture transport conduct shifted eastward and turned northward to Japan from the tropical western Pacific rather than to East China from the South China Sea (SCS) as in normal years. Severe and prolonged drought occurred over extensive areas of North China and heavy precipitation in South China and Japan. The investigation on the possible intrinsic mechanisms related to such an anomalous monsoon year has shown that the unique behavior of intraseasonal oscillation may play an essential role during this process. During this year, the northward propagation of 30-60-day anomalous low-level cyclone/anticyclone collapsed in the region around 20°N and did not extend beyond the latitudes of the Yangtze River basin due to the barrier of strong cold air intrusion from the mid-latitudes. The southwesterly moisture flux on the northwestern flank of the anticyclonic moisture transport system in the western North Pacific, which was regulated by the northward shift of 30-60-day cyclonic/anticyclonic moisture transport, also did not reach the region north of 30°N as well. Under this circumstance, the weak northward advance of the monsoon westerlies and associated northward moisture transport could not arrive in North China and led to the severe droughts there in 1999. The SCS and South China were mostly affected by the airflow in the southern and northern flanks of the same 30-60-day cyclones or anticyclones, respectively, and thus controlled by the nearly reverse zonal wind and moisture convergent/divergent conditions. The rainfall in the SCS and South China showed out-of-phase oscillation through the transient local Hadley circulation, with the rainfall maximum occurring in the SCS (South China) when the 30-60-day anticyclone (cyclone) reached its peak phase.