Taking the Paleogene Shahejie Formation in Nanpu sag of Bohai Bay Basin as an example,this study comprehensively utilizes seismic,mud logging,well logging,physical property analysis and core thin section data to inves...Taking the Paleogene Shahejie Formation in Nanpu sag of Bohai Bay Basin as an example,this study comprehensively utilizes seismic,mud logging,well logging,physical property analysis and core thin section data to investigate the metamorphic reservoir formed by contact metamorphism after igneous rock intrusion.(1)A geological model of the igneous intrusion contact met amorphic system is proposed,which can be divided into five structural layers vertically:the intrusion,upper metamorphic aureole,lower metamorphic aureole,normal sedimentary layers on the roof and floor.(2)The intrusion is characterized by xenoliths indicating intrusive facies at the top,regular changes in rock texture and mineral crystallization from the center to the edge on a microscopic scale,and low-angle oblique penetrations of the intrusion through sedimentary strata on a macroscopic scale.The metamorphic aureole has characteristics such as sedimentary rocks as the host rock,typical palimpsest textures developed,various low-temperature thermal metamorphic minerals developed,and medium-low grade thermal metamorphic rocks as the lithology.(3)The reservoir in contact metamorphic aureole has two types of reservoir spaces:matrix pores and fractures.The matrix pores are secondary"intergranular pores"distributed around metamorphic minerals after thermal metamorphic transformation in metasandstones.The fractures are mainly structural fractures and intrusive compressive fractures in metamudstones.The reservoirs generally have three spatial distribution characteristics:layered,porphyritic and hydrocarbon impregnation along fracture.(4)The distribution of reservoirs in the metamorphic aureole is mainly controlled by the intensity of thermal baking.Furthermore,the distribution of favorable reservoirs is controlled by the coupling of favorable lithofacies and thermal contact metamorphism,intrusive compression and hydrothermal dissolution.The proposal and application of the geological model of the intrusion contact metamorphic system are expected to promote the discovery of exploration targets of contact metamorphic rock in Nanpu sag,and provide a reference for the study and exploration of deep contact metamorphic rock reservoirs in the Bohai Bay Basin.展开更多
Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suf...Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources.展开更多
The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during the...The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches.展开更多
This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intr...This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge.展开更多
With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detecti...With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detection accuracy,but collecting samples for centralized training brings the huge risk of data privacy leakage.Furthermore,the training of supervised deep learning models requires a large number of labeled samples,which is usually cumbersome.The“black-box”problem also makes the DL models of NIDS untrustworthy.In this paper,we propose a trusted Federated Learning(FL)Traffic IDS method called FL-TIDS to address the above-mentioned problems.In FL-TIDS,we design an unsupervised intrusion detection model based on autoencoders that alleviates the reliance on marked samples.At the same time,we use FL for model training to protect data privacy.In addition,we design an improved SHAP interpretable method based on chi-square test to perform interpretable analysis of the trained model.We conducted several experiments to evaluate the proposed FL-TIDS.We first determine experimentally the structure and the number of neurons of the unsupervised AE model.Secondly,we evaluated the proposed method using the UNSW-NB15 and CICIDS2017 datasets.The exper-imental results show that the unsupervised AE model has better performance than the other 7 intrusion detection models in terms of precision,recall and f1-score.Then,federated learning is used to train the intrusion detection model.The experimental results indicate that the model is more accurate than the local learning model.Finally,we use an improved SHAP explainability method based on Chi-square test to analyze the explainability.The analysis results show that the identification characteristics of the model are consistent with the attack characteristics,and the model is reliable.展开更多
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a...A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.展开更多
In recent years,frequent network attacks have highlighted the importance of efficient detection methods for ensuring cyberspace security.This paper presents a novel intrusion detection system consisting of a data prep...In recent years,frequent network attacks have highlighted the importance of efficient detection methods for ensuring cyberspace security.This paper presents a novel intrusion detection system consisting of a data prepro-cessing stage and a deep learning model for accurately identifying network attacks.We have proposed four deep neural network models,which are constructed using architectures such as Convolutional Neural Networks(CNN),Bi-directional Long Short-Term Memory(BiLSTM),Bidirectional Gate Recurrent Unit(BiGRU),and Attention mechanism.These models have been evaluated for their detection performance on the NSL-KDD dataset.To enhance the compatibility between the data and the models,we apply various preprocessing techniques and employ the particle swarm optimization algorithm to perform feature selection on the NSL-KDD dataset,resulting in an optimized feature subset.Moreover,we address class imbalance in the dataset using focal loss.Finally,we employ the BO-TPE algorithm to optimize the hyperparameters of the four models,maximizing their detection performance.The test results demonstrate that the proposed model is capable of extracting the spatiotemporal features of network traffic data effectively.In binary and multiclass experiments,it achieved accuracy rates of 0.999158 and 0.999091,respectively,surpassing other state-of-the-art methods.展开更多
Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intr...Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intrusion prediction and detection.In particular,the Network Security Laboratory-Knowledge Discovery in Databases(NSL-KDD)is an extensively used benchmark dataset for evaluating intrusion detection systems(IDSs)as it incorporates various network traffic attacks.It is worth mentioning that a large number of studies have tackled the problem of intrusion detection using machine learning models,but the performance of these models often decreases when evaluated on new attacks.This has led to the utilization of deep learning techniques,which have showcased significant potential for processing large datasets and therefore improving detection accuracy.For that reason,this paper focuses on the role of stacking deep learning models,including convolution neural network(CNN)and deep neural network(DNN)for improving the intrusion detection rate of the NSL-KDD dataset.Each base model is trained on the NSL-KDD dataset to extract significant features.Once the base models have been trained,the stacking process proceeds to the second stage,where a simple meta-model has been trained on the predictions generated from the proposed base models.The combination of the predictions allows the meta-model to distinguish different classes of attacks and increase the detection rate.Our experimental evaluations using the NSL-KDD dataset have shown the efficacy of stacking deep learning models for intrusion detection.The performance of the ensemble of base models,combined with the meta-model,exceeds the performance of individual models.Our stacking model has attained an accuracy of 99%and an average F1-score of 93%for the multi-classification scenario.Besides,the training time of the proposed ensemble model is lower than the training time of benchmark techniques,demonstrating its efficiency and robustness.展开更多
The Internet of Things(IoT)links various devices to digital services and significantly improves the quality of our lives.However,as IoT connectivity is growing rapidly,so do the risks of network vulnerabilities and th...The Internet of Things(IoT)links various devices to digital services and significantly improves the quality of our lives.However,as IoT connectivity is growing rapidly,so do the risks of network vulnerabilities and threats.Many interesting Intrusion Detection Systems(IDSs)are presented based on machine learning(ML)techniques to overcome this problem.Given the resource limitations of fog computing environments,a lightweight IDS is essential.This paper introduces a hybrid deep learning(DL)method that combines convolutional neural networks(CNN)and long short-term memory(LSTM)to build an energy-aware,anomaly-based IDS.We test this system on a recent dataset,focusing on reducing overhead while maintaining high accuracy and a low false alarm rate.We compare CICIoT2023,KDD-99 and NSL-KDD datasets to evaluate the performance of the proposed IDS model based on key metrics,including latency,energy consumption,false alarm rate and detection rate metrics.Our findings show an accuracy rate over 92%and a false alarm rate below 0.38%.These results demonstrate that our system provides strong security without excessive resource use.The practicality of deploying IDS with limited resources is demonstrated by the successful implementation of IDS functionality on a Raspberry Pi acting as a Fog node.The proposed lightweight model,with a maximum power consumption of 6.12 W,demonstrates its potential to operate effectively on energy-limited devices such as low-power fog nodes or edge devices.We prioritize energy efficiency whilemaintaining high accuracy,distinguishing our scheme fromexisting approaches.Extensive experiments demonstrate a significant reduction in false positives,ensuring accurate identification of genuine security threats while minimizing unnecessary alerts.展开更多
Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,hi...Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.展开更多
The rapid growth of Internet of Things(IoT)devices has brought numerous benefits to the interconnected world.However,the ubiquitous nature of IoT networks exposes them to various security threats,including anomaly int...The rapid growth of Internet of Things(IoT)devices has brought numerous benefits to the interconnected world.However,the ubiquitous nature of IoT networks exposes them to various security threats,including anomaly intrusion attacks.In addition,IoT devices generate a high volume of unstructured data.Traditional intrusion detection systems often struggle to cope with the unique characteristics of IoT networks,such as resource constraints and heterogeneous data sources.Given the unpredictable nature of network technologies and diverse intrusion methods,conventional machine-learning approaches seem to lack efficiency.Across numerous research domains,deep learning techniques have demonstrated their capability to precisely detect anomalies.This study designs and enhances a novel anomaly-based intrusion detection system(AIDS)for IoT networks.Firstly,a Sparse Autoencoder(SAE)is applied to reduce the high dimension and get a significant data representation by calculating the reconstructed error.Secondly,the Convolutional Neural Network(CNN)technique is employed to create a binary classification approach.The proposed SAE-CNN approach is validated using the Bot-IoT dataset.The proposed models exceed the performance of the existing deep learning approach in the literature with an accuracy of 99.9%,precision of 99.9%,recall of 100%,F1 of 99.9%,False Positive Rate(FPR)of 0.0003,and True Positive Rate(TPR)of 0.9992.In addition,alternative metrics,such as training and testing durations,indicated that SAE-CNN performs better.展开更多
Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),a...Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),are essential due to the limitations of simpler security measures,such as cryptography and firewalls.Due to their compact nature and low energy reserves,wireless networks present a significant challenge for security procedures.The features of small cells can cause threats to the network.Network Coding(NC)enabled small cells are vulnerable to various types of attacks.Avoiding attacks and performing secure“peer”to“peer”data transmission is a challenging task in small cells.Due to the low power and memory requirements of the proposed model,it is well suited to use with constrained small cells.An attacker cannot change the contents of data and generate a new Hashed Homomorphic Message Authentication Code(HHMAC)hash between transmissions since the HMAC function is generated using the shared secret.In this research,a chaotic sequence mapping based low overhead 1D Improved Logistic Map is used to secure“peer”to“peer”data transmission model using lightweight H-MAC(1D-LM-P2P-LHHMAC)is proposed with accurate intrusion detection.The proposed model is evaluated with the traditional models by considering various evaluation metrics like Vector Set Generation Accuracy Levels,Key Pair Generation Time Levels,Chaotic Map Accuracy Levels,Intrusion Detection Accuracy Levels,and the results represent that the proposed model performance in chaotic map accuracy level is 98%and intrusion detection is 98.2%.The proposed model is compared with the traditional models and the results represent that the proposed model secure data transmission levels are high.展开更多
A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have ...A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have occurred,which led to an active research area for improving NIDS technologies.In an analysis of related works,it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction(FR)and Machine Learning(ML)techniques on NIDS datasets.However,these datasets are different in feature sets,attack types,and network design.Therefore,this paper aims to discover whether these techniques can be generalised across various datasets.Six ML models are utilised:a Deep Feed Forward(DFF),Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),Decision Tree(DT),Logistic Regression(LR),and Naive Bayes(NB).The accuracy of three Feature Extraction(FE)algorithms is detected;Principal Component Analysis(PCA),Auto-encoder(AE),and Linear Discriminant Analysis(LDA),are evaluated using three benchmark datasets:UNSW-NB15,ToN-IoT and CSE-CIC-IDS2018.Although PCA and AE algorithms have been widely used,the determination of their optimal number of extracted dimensions has been overlooked.The results indicate that no clear FE method or ML model can achieve the best scores for all datasets.The optimal number of extracted dimensions has been identified for each dataset,and LDA degrades the performance of the ML models on two datasets.The variance is used to analyse the extracted dimensions of LDA and PCA.Finally,this paper concludes that the choice of datasets significantly alters the performance of the applied techniques.We believe that a universal(benchmark)feature set is needed to facilitate further advancement and progress of research in this field.展开更多
The unfrozenwater content(UWC)is a crucial parameter that affects the strength and thermal properties of rocks in relation to engineering construction and geological disasters in cold regions.In this study,three diffe...The unfrozenwater content(UWC)is a crucial parameter that affects the strength and thermal properties of rocks in relation to engineering construction and geological disasters in cold regions.In this study,three different methods were employed to test and estimate the UWC of saturated sandstones,including nuclear magnetic resonance(NMR),mercury intrusion porosimetry(MIP),and ultrasonic methods.The NMR method enabled the direct measurement of the UWC of sandstones using the free induction decay(FID).The MIP method was used to analyze the pore structures of sandstones,with the UWC subsequently calculated based on pore ice crystallization.Therefore,the MIP test constituted an indirect measurement method.Furthermore,a correlation was established between the P-wave velocity and the UWC of these sandstones based on the mixture theory,which could be employed to estimate the UWC as an empirical method.All methods demonstrated that the UWC initially exhibited a rapid decrease from 0C to5C and then generally became constant beyond20C.However,these test methods had different characteristics.The NMR method was used to directly and accurately calculate the UWC in the laboratory.However,the cost and complexity of NMR equipment have precluded its use in the field.The UWC can be effectively estimated by the MIP test,but the estimation accuracy is influenced by the ice crystallization process and the pore size distribution.The P-wave velocity has been demonstrated to be a straightforward and practical empirical parameter and was utilized to estimate the UWC based on the mixture theory.This method may be more suitable in the field.All methods confirmed the existence of a hysteresis phenomenon in the freezing-thawing process.The average hysteresis coefficient was approximately 0.538,thus validating the GibbseThomson equation.This study not only presents alternative methodologies for estimating the UWC of saturated sandstones but also contribute to our understanding of the freezing-thawing process of pore water.展开更多
Network intrusion detection systems(NIDS)based on deep learning have continued to make significant advances.However,the following challenges remain:on the one hand,simply applying only Temporal Convolutional Networks(...Network intrusion detection systems(NIDS)based on deep learning have continued to make significant advances.However,the following challenges remain:on the one hand,simply applying only Temporal Convolutional Networks(TCNs)can lead to models that ignore the impact of network traffic features at different scales on the detection performance.On the other hand,some intrusion detection methods considermulti-scale information of traffic data,but considering only forward network traffic information can lead to deficiencies in capturing multi-scale temporal features.To address both of these issues,we propose a hybrid Convolutional Neural Network that supports a multi-output strategy(BONUS)for industrial internet intrusion detection.First,we create a multiscale Temporal Convolutional Network by stacking TCN of different scales to capture the multiscale information of network traffic.Meanwhile,we propose a bi-directional structure and dynamically set the weights to fuse the forward and backward contextual information of network traffic at each scale to enhance the model’s performance in capturing the multi-scale temporal features of network traffic.In addition,we introduce a gated network for each of the two branches in the proposed method to assist the model in learning the feature representation of each branch.Extensive experiments reveal the effectiveness of the proposed approach on two publicly available traffic intrusion detection datasets named UNSW-NB15 and NSL-KDD with F1 score of 85.03% and 99.31%,respectively,which also validates the effectiveness of enhancing the model’s ability to capture multi-scale temporal features of traffic data on detection performance.展开更多
Artificial immune detection can be used to detect network intrusions in an adaptive approach and proper matching methods can improve the accuracy of immune detection methods.This paper proposes an artificial immune de...Artificial immune detection can be used to detect network intrusions in an adaptive approach and proper matching methods can improve the accuracy of immune detection methods.This paper proposes an artificial immune detection model for network intrusion data based on a quantitative matching method.The proposed model defines the detection process by using network data and decimal values to express features and artificial immune mechanisms are simulated to define immune elements.Then,to improve the accuracy of similarity calculation,a quantitative matching method is proposed.The model uses mathematical methods to train and evolve immune elements,increasing the diversity of immune recognition and allowing for the successful detection of unknown intrusions.The proposed model’s objective is to accurately identify known intrusions and expand the identification of unknown intrusions through signature detection and immune detection,overcoming the disadvantages of traditional methods.The experiment results show that the proposed model can detect intrusions effectively.It has a detection rate of more than 99.6%on average and a false alarm rate of 0.0264%.It outperforms existing immune intrusion detection methods in terms of comprehensive detection performance.展开更多
The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accide...The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accident prevention,cost reduction,and enhanced traffic regularity.Despite these benefits,IoV technology is susceptible to cyber-attacks,which can exploit vulnerabilities in the vehicle network,leading to perturbations,disturbances,non-recognition of traffic signs,accidents,and vehicle immobilization.This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning(DTL)models for Intrusion Detection Systems in the Internet of Vehicles(IDS-IoV)based on anomaly detection.IDS-IoV leverages anomaly detection through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks.These systems can autonomously create specific models based on network data to differentiate between regular traffic and cyber-attacks.Among these techniques,transfer learning models are particularly promising due to their efficacy with tagged data,reduced training time,lower memory usage,and decreased computational complexity.We evaluate DTL models against criteria including the ability to transfer knowledge,detection rate,accurate analysis of complex data,and stability.This review highlights the significant progress made in the field,showcasing how DTL models enhance the performance and reliability of IDS-IoV systems.By examining recent advancements,we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments,ensuring safer and more efficient transportation networks.展开更多
The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device has...The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device hascaught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. Thishas resulted in a myriad of security challenges, including information leakage, malware propagation, and financialloss, among others. Consequently, developing an intrusion detection system to identify both active and potentialintrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practicalintrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, andbidirectionalGated RecurrentUnitNetwork (biGRU).Our ResNeSt-biGRUframework diverges fromconventionalintrusion detection systems (IDS) by employing this dual-layeredmechanism that exploits the temporal continuityand spatial feature within network data streams, a methodological innovation that enhances detection accuracy.In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, totrain and evaluate IDSmodels with a focus on identifying potential intrusion traffics. The effectiveness of proposedscheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on theN-BaIoT datasetas well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal thepotential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preservethe overall security of IoT ecosystems.展开更多
The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the Internet.Regrettably,this d...The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the Internet.Regrettably,this development has expanded the potential targets that hackers might exploit.Without adequate safeguards,data transmitted on the internet is significantly more susceptible to unauthorized access,theft,or alteration.The identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious attacks.This research paper introduces a novel intrusion detection framework that utilizes Recurrent Neural Networks(RNN)integrated with Long Short-Term Memory(LSTM)units.The proposed model can identify various types of cyberattacks,including conventional and distinctive forms.Recurrent networks,a specific kind of feedforward neural networks,possess an intrinsic memory component.Recurrent Neural Networks(RNNs)incorporating Long Short-Term Memory(LSTM)mechanisms have demonstrated greater capabilities in retaining and utilizing data dependencies over extended periods.Metrics such as data types,training duration,accuracy,number of false positives,and number of false negatives are among the parameters employed to assess the effectiveness of these models in identifying both common and unusual cyberattacks.RNNs are utilised in conjunction with LSTM to support human analysts in identifying possible intrusion events,hence enhancing their decision-making capabilities.A potential solution to address the limitations of Shallow learning is the introduction of the Eccentric Intrusion Detection Model.This model utilises Recurrent Neural Networks,specifically exploiting LSTM techniques.The proposed model achieves detection accuracy(99.5%),generalisation(99%),and false-positive rate(0.72%),the parameters findings reveal that it is superior to state-of-the-art techniques.展开更多
In the face of the effective popularity of the Internet of Things(IoT),but the frequent occurrence of cybersecurity incidents,various cybersecurity protection means have been proposed and applied.Among them,Intrusion ...In the face of the effective popularity of the Internet of Things(IoT),but the frequent occurrence of cybersecurity incidents,various cybersecurity protection means have been proposed and applied.Among them,Intrusion Detection System(IDS)has been proven to be stable and efficient.However,traditional intrusion detection methods have shortcomings such as lowdetection accuracy and inability to effectively identifymalicious attacks.To address the above problems,this paper fully considers the superiority of deep learning models in processing highdimensional data,and reasonable data type conversion methods can extract deep features and detect classification using advanced computer vision techniques to improve classification accuracy.TheMarkov TransformField(MTF)method is used to convert 1Dnetwork traffic data into 2D images,and then the converted 2D images are filtered by UnsharpMasking to enhance the image details by sharpening;to further improve the accuracy of data classification and detection,unlike using the existing high-performance baseline image classification models,a soft-voting integrated model,which integrates three deep learning models,MobileNet,VGGNet and ResNet,to finally obtain an effective IoT intrusion detection architecture:the MUS model.Four types of experiments are conducted on the publicly available intrusion detection dataset CICIDS2018 and the IoT network traffic dataset N_BaIoT,and the results demonstrate that the accuracy of attack traffic detection is greatly improved,which is not only applicable to the IoT intrusion detection environment,but also to different types of attacks and different network environments,which confirms the effectiveness of the work done.展开更多
基金Supported by the Basic Science Research Fund Project of PetroChina Affiliated Institute(2020D-5008-06)。
文摘Taking the Paleogene Shahejie Formation in Nanpu sag of Bohai Bay Basin as an example,this study comprehensively utilizes seismic,mud logging,well logging,physical property analysis and core thin section data to investigate the metamorphic reservoir formed by contact metamorphism after igneous rock intrusion.(1)A geological model of the igneous intrusion contact met amorphic system is proposed,which can be divided into five structural layers vertically:the intrusion,upper metamorphic aureole,lower metamorphic aureole,normal sedimentary layers on the roof and floor.(2)The intrusion is characterized by xenoliths indicating intrusive facies at the top,regular changes in rock texture and mineral crystallization from the center to the edge on a microscopic scale,and low-angle oblique penetrations of the intrusion through sedimentary strata on a macroscopic scale.The metamorphic aureole has characteristics such as sedimentary rocks as the host rock,typical palimpsest textures developed,various low-temperature thermal metamorphic minerals developed,and medium-low grade thermal metamorphic rocks as the lithology.(3)The reservoir in contact metamorphic aureole has two types of reservoir spaces:matrix pores and fractures.The matrix pores are secondary"intergranular pores"distributed around metamorphic minerals after thermal metamorphic transformation in metasandstones.The fractures are mainly structural fractures and intrusive compressive fractures in metamudstones.The reservoirs generally have three spatial distribution characteristics:layered,porphyritic and hydrocarbon impregnation along fracture.(4)The distribution of reservoirs in the metamorphic aureole is mainly controlled by the intensity of thermal baking.Furthermore,the distribution of favorable reservoirs is controlled by the coupling of favorable lithofacies and thermal contact metamorphism,intrusive compression and hydrothermal dissolution.The proposal and application of the geological model of the intrusion contact metamorphic system are expected to promote the discovery of exploration targets of contact metamorphic rock in Nanpu sag,and provide a reference for the study and exploration of deep contact metamorphic rock reservoirs in the Bohai Bay Basin.
基金supported by the National Natural Science Foundation of China(Nos.51977113,62293500,62293501 and 62293505).
文摘Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources.
文摘The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches.
基金Princess Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2024R319)funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge.
基金supported by National Natural Science Fundation of China under Grant 61972208National Natural Science Fundation(General Program)of China under Grant 61972211+2 种基金National Key Research and Development Project of China under Grant 2020YFB1804700Future Network Innovation Research and Application Projects under Grant No.2021FNA020062021 Jiangsu Postgraduate Research Innovation Plan under Grant No.KYCX210794.
文摘With the rapid development of the Internet,network security and data privacy are increasingly valued.Although classical Network Intrusion Detection System(NIDS)based on Deep Learning(DL)models can provide good detection accuracy,but collecting samples for centralized training brings the huge risk of data privacy leakage.Furthermore,the training of supervised deep learning models requires a large number of labeled samples,which is usually cumbersome.The“black-box”problem also makes the DL models of NIDS untrustworthy.In this paper,we propose a trusted Federated Learning(FL)Traffic IDS method called FL-TIDS to address the above-mentioned problems.In FL-TIDS,we design an unsupervised intrusion detection model based on autoencoders that alleviates the reliance on marked samples.At the same time,we use FL for model training to protect data privacy.In addition,we design an improved SHAP interpretable method based on chi-square test to perform interpretable analysis of the trained model.We conducted several experiments to evaluate the proposed FL-TIDS.We first determine experimentally the structure and the number of neurons of the unsupervised AE model.Secondly,we evaluated the proposed method using the UNSW-NB15 and CICIDS2017 datasets.The exper-imental results show that the unsupervised AE model has better performance than the other 7 intrusion detection models in terms of precision,recall and f1-score.Then,federated learning is used to train the intrusion detection model.The experimental results indicate that the model is more accurate than the local learning model.Finally,we use an improved SHAP explainability method based on Chi-square test to analyze the explainability.The analysis results show that the identification characteristics of the model are consistent with the attack characteristics,and the model is reliable.
文摘A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model.
文摘In recent years,frequent network attacks have highlighted the importance of efficient detection methods for ensuring cyberspace security.This paper presents a novel intrusion detection system consisting of a data prepro-cessing stage and a deep learning model for accurately identifying network attacks.We have proposed four deep neural network models,which are constructed using architectures such as Convolutional Neural Networks(CNN),Bi-directional Long Short-Term Memory(BiLSTM),Bidirectional Gate Recurrent Unit(BiGRU),and Attention mechanism.These models have been evaluated for their detection performance on the NSL-KDD dataset.To enhance the compatibility between the data and the models,we apply various preprocessing techniques and employ the particle swarm optimization algorithm to perform feature selection on the NSL-KDD dataset,resulting in an optimized feature subset.Moreover,we address class imbalance in the dataset using focal loss.Finally,we employ the BO-TPE algorithm to optimize the hyperparameters of the four models,maximizing their detection performance.The test results demonstrate that the proposed model is capable of extracting the spatiotemporal features of network traffic data effectively.In binary and multiclass experiments,it achieved accuracy rates of 0.999158 and 0.999091,respectively,surpassing other state-of-the-art methods.
文摘Intrusion detection is a predominant task that monitors and protects the network infrastructure.Therefore,many datasets have been published and investigated by researchers to analyze and understand the problem of intrusion prediction and detection.In particular,the Network Security Laboratory-Knowledge Discovery in Databases(NSL-KDD)is an extensively used benchmark dataset for evaluating intrusion detection systems(IDSs)as it incorporates various network traffic attacks.It is worth mentioning that a large number of studies have tackled the problem of intrusion detection using machine learning models,but the performance of these models often decreases when evaluated on new attacks.This has led to the utilization of deep learning techniques,which have showcased significant potential for processing large datasets and therefore improving detection accuracy.For that reason,this paper focuses on the role of stacking deep learning models,including convolution neural network(CNN)and deep neural network(DNN)for improving the intrusion detection rate of the NSL-KDD dataset.Each base model is trained on the NSL-KDD dataset to extract significant features.Once the base models have been trained,the stacking process proceeds to the second stage,where a simple meta-model has been trained on the predictions generated from the proposed base models.The combination of the predictions allows the meta-model to distinguish different classes of attacks and increase the detection rate.Our experimental evaluations using the NSL-KDD dataset have shown the efficacy of stacking deep learning models for intrusion detection.The performance of the ensemble of base models,combined with the meta-model,exceeds the performance of individual models.Our stacking model has attained an accuracy of 99%and an average F1-score of 93%for the multi-classification scenario.Besides,the training time of the proposed ensemble model is lower than the training time of benchmark techniques,demonstrating its efficiency and robustness.
基金supported by the interdisciplinary center of smart mobility and logistics at King Fahd University of Petroleum and Minerals(Grant number INML2400).
文摘The Internet of Things(IoT)links various devices to digital services and significantly improves the quality of our lives.However,as IoT connectivity is growing rapidly,so do the risks of network vulnerabilities and threats.Many interesting Intrusion Detection Systems(IDSs)are presented based on machine learning(ML)techniques to overcome this problem.Given the resource limitations of fog computing environments,a lightweight IDS is essential.This paper introduces a hybrid deep learning(DL)method that combines convolutional neural networks(CNN)and long short-term memory(LSTM)to build an energy-aware,anomaly-based IDS.We test this system on a recent dataset,focusing on reducing overhead while maintaining high accuracy and a low false alarm rate.We compare CICIoT2023,KDD-99 and NSL-KDD datasets to evaluate the performance of the proposed IDS model based on key metrics,including latency,energy consumption,false alarm rate and detection rate metrics.Our findings show an accuracy rate over 92%and a false alarm rate below 0.38%.These results demonstrate that our system provides strong security without excessive resource use.The practicality of deploying IDS with limited resources is demonstrated by the successful implementation of IDS functionality on a Raspberry Pi acting as a Fog node.The proposed lightweight model,with a maximum power consumption of 6.12 W,demonstrates its potential to operate effectively on energy-limited devices such as low-power fog nodes or edge devices.We prioritize energy efficiency whilemaintaining high accuracy,distinguishing our scheme fromexisting approaches.Extensive experiments demonstrate a significant reduction in false positives,ensuring accurate identification of genuine security threats while minimizing unnecessary alerts.
基金The authors would like to thank Princess Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2023R319)this research was funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.
基金Researchers Supporting Project Number(RSP2024R206),King Saud University,Riyadh,Saudi Arabia.
文摘The rapid growth of Internet of Things(IoT)devices has brought numerous benefits to the interconnected world.However,the ubiquitous nature of IoT networks exposes them to various security threats,including anomaly intrusion attacks.In addition,IoT devices generate a high volume of unstructured data.Traditional intrusion detection systems often struggle to cope with the unique characteristics of IoT networks,such as resource constraints and heterogeneous data sources.Given the unpredictable nature of network technologies and diverse intrusion methods,conventional machine-learning approaches seem to lack efficiency.Across numerous research domains,deep learning techniques have demonstrated their capability to precisely detect anomalies.This study designs and enhances a novel anomaly-based intrusion detection system(AIDS)for IoT networks.Firstly,a Sparse Autoencoder(SAE)is applied to reduce the high dimension and get a significant data representation by calculating the reconstructed error.Secondly,the Convolutional Neural Network(CNN)technique is employed to create a binary classification approach.The proposed SAE-CNN approach is validated using the Bot-IoT dataset.The proposed models exceed the performance of the existing deep learning approach in the literature with an accuracy of 99.9%,precision of 99.9%,recall of 100%,F1 of 99.9%,False Positive Rate(FPR)of 0.0003,and True Positive Rate(TPR)of 0.9992.In addition,alternative metrics,such as training and testing durations,indicated that SAE-CNN performs better.
文摘Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),are essential due to the limitations of simpler security measures,such as cryptography and firewalls.Due to their compact nature and low energy reserves,wireless networks present a significant challenge for security procedures.The features of small cells can cause threats to the network.Network Coding(NC)enabled small cells are vulnerable to various types of attacks.Avoiding attacks and performing secure“peer”to“peer”data transmission is a challenging task in small cells.Due to the low power and memory requirements of the proposed model,it is well suited to use with constrained small cells.An attacker cannot change the contents of data and generate a new Hashed Homomorphic Message Authentication Code(HHMAC)hash between transmissions since the HMAC function is generated using the shared secret.In this research,a chaotic sequence mapping based low overhead 1D Improved Logistic Map is used to secure“peer”to“peer”data transmission model using lightweight H-MAC(1D-LM-P2P-LHHMAC)is proposed with accurate intrusion detection.The proposed model is evaluated with the traditional models by considering various evaluation metrics like Vector Set Generation Accuracy Levels,Key Pair Generation Time Levels,Chaotic Map Accuracy Levels,Intrusion Detection Accuracy Levels,and the results represent that the proposed model performance in chaotic map accuracy level is 98%and intrusion detection is 98.2%.The proposed model is compared with the traditional models and the results represent that the proposed model secure data transmission levels are high.
文摘A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have occurred,which led to an active research area for improving NIDS technologies.In an analysis of related works,it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction(FR)and Machine Learning(ML)techniques on NIDS datasets.However,these datasets are different in feature sets,attack types,and network design.Therefore,this paper aims to discover whether these techniques can be generalised across various datasets.Six ML models are utilised:a Deep Feed Forward(DFF),Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),Decision Tree(DT),Logistic Regression(LR),and Naive Bayes(NB).The accuracy of three Feature Extraction(FE)algorithms is detected;Principal Component Analysis(PCA),Auto-encoder(AE),and Linear Discriminant Analysis(LDA),are evaluated using three benchmark datasets:UNSW-NB15,ToN-IoT and CSE-CIC-IDS2018.Although PCA and AE algorithms have been widely used,the determination of their optimal number of extracted dimensions has been overlooked.The results indicate that no clear FE method or ML model can achieve the best scores for all datasets.The optimal number of extracted dimensions has been identified for each dataset,and LDA degrades the performance of the ML models on two datasets.The variance is used to analyse the extracted dimensions of LDA and PCA.Finally,this paper concludes that the choice of datasets significantly alters the performance of the applied techniques.We believe that a universal(benchmark)feature set is needed to facilitate further advancement and progress of research in this field.
基金supported by the National Natural Science Foundation of China(Grant No.42377191)Hubei Provincial Natural Science Foundation of China(Grant No.2021CFA094)“The 14th Five Year Plan”Hubei Provincial advantaged characteristic disciplines(groups)project of Wuhan University of Science and Technology(Grant No.2023A0303)。
文摘The unfrozenwater content(UWC)is a crucial parameter that affects the strength and thermal properties of rocks in relation to engineering construction and geological disasters in cold regions.In this study,three different methods were employed to test and estimate the UWC of saturated sandstones,including nuclear magnetic resonance(NMR),mercury intrusion porosimetry(MIP),and ultrasonic methods.The NMR method enabled the direct measurement of the UWC of sandstones using the free induction decay(FID).The MIP method was used to analyze the pore structures of sandstones,with the UWC subsequently calculated based on pore ice crystallization.Therefore,the MIP test constituted an indirect measurement method.Furthermore,a correlation was established between the P-wave velocity and the UWC of these sandstones based on the mixture theory,which could be employed to estimate the UWC as an empirical method.All methods demonstrated that the UWC initially exhibited a rapid decrease from 0C to5C and then generally became constant beyond20C.However,these test methods had different characteristics.The NMR method was used to directly and accurately calculate the UWC in the laboratory.However,the cost and complexity of NMR equipment have precluded its use in the field.The UWC can be effectively estimated by the MIP test,but the estimation accuracy is influenced by the ice crystallization process and the pore size distribution.The P-wave velocity has been demonstrated to be a straightforward and practical empirical parameter and was utilized to estimate the UWC based on the mixture theory.This method may be more suitable in the field.All methods confirmed the existence of a hysteresis phenomenon in the freezing-thawing process.The average hysteresis coefficient was approximately 0.538,thus validating the GibbseThomson equation.This study not only presents alternative methodologies for estimating the UWC of saturated sandstones but also contribute to our understanding of the freezing-thawing process of pore water.
基金sponsored by the Autonomous Region Key R&D Task Special(2022B01008)the National Key R&D Program of China(SQ2022AAA010308-5).
文摘Network intrusion detection systems(NIDS)based on deep learning have continued to make significant advances.However,the following challenges remain:on the one hand,simply applying only Temporal Convolutional Networks(TCNs)can lead to models that ignore the impact of network traffic features at different scales on the detection performance.On the other hand,some intrusion detection methods considermulti-scale information of traffic data,but considering only forward network traffic information can lead to deficiencies in capturing multi-scale temporal features.To address both of these issues,we propose a hybrid Convolutional Neural Network that supports a multi-output strategy(BONUS)for industrial internet intrusion detection.First,we create a multiscale Temporal Convolutional Network by stacking TCN of different scales to capture the multiscale information of network traffic.Meanwhile,we propose a bi-directional structure and dynamically set the weights to fuse the forward and backward contextual information of network traffic at each scale to enhance the model’s performance in capturing the multi-scale temporal features of network traffic.In addition,we introduce a gated network for each of the two branches in the proposed method to assist the model in learning the feature representation of each branch.Extensive experiments reveal the effectiveness of the proposed approach on two publicly available traffic intrusion detection datasets named UNSW-NB15 and NSL-KDD with F1 score of 85.03% and 99.31%,respectively,which also validates the effectiveness of enhancing the model’s ability to capture multi-scale temporal features of traffic data on detection performance.
基金This research was funded by the Scientific Research Project of Leshan Normal University(No.2022SSDX002)the Scientific Plan Project of Leshan(No.22NZD012).
文摘Artificial immune detection can be used to detect network intrusions in an adaptive approach and proper matching methods can improve the accuracy of immune detection methods.This paper proposes an artificial immune detection model for network intrusion data based on a quantitative matching method.The proposed model defines the detection process by using network data and decimal values to express features and artificial immune mechanisms are simulated to define immune elements.Then,to improve the accuracy of similarity calculation,a quantitative matching method is proposed.The model uses mathematical methods to train and evolve immune elements,increasing the diversity of immune recognition and allowing for the successful detection of unknown intrusions.The proposed model’s objective is to accurately identify known intrusions and expand the identification of unknown intrusions through signature detection and immune detection,overcoming the disadvantages of traditional methods.The experiment results show that the proposed model can detect intrusions effectively.It has a detection rate of more than 99.6%on average and a false alarm rate of 0.0264%.It outperforms existing immune intrusion detection methods in terms of comprehensive detection performance.
基金This paper is financed by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,Project No.BG-RRP-2.004-0001-C01.
文摘The high performance of IoT technology in transportation networks has led to the increasing adoption of Internet of Vehicles(IoV)technology.The functional advantages of IoV include online communication services,accident prevention,cost reduction,and enhanced traffic regularity.Despite these benefits,IoV technology is susceptible to cyber-attacks,which can exploit vulnerabilities in the vehicle network,leading to perturbations,disturbances,non-recognition of traffic signs,accidents,and vehicle immobilization.This paper reviews the state-of-the-art achievements and developments in applying Deep Transfer Learning(DTL)models for Intrusion Detection Systems in the Internet of Vehicles(IDS-IoV)based on anomaly detection.IDS-IoV leverages anomaly detection through machine learning and DTL techniques to mitigate the risks posed by cyber-attacks.These systems can autonomously create specific models based on network data to differentiate between regular traffic and cyber-attacks.Among these techniques,transfer learning models are particularly promising due to their efficacy with tagged data,reduced training time,lower memory usage,and decreased computational complexity.We evaluate DTL models against criteria including the ability to transfer knowledge,detection rate,accurate analysis of complex data,and stability.This review highlights the significant progress made in the field,showcasing how DTL models enhance the performance and reliability of IDS-IoV systems.By examining recent advancements,we provide insights into how DTL can effectively address cyber-attack challenges in IoV environments,ensuring safer and more efficient transportation networks.
基金the National Natural Science Foundation of China(No.61662004).
文摘The rapid expansion of Internet of Things (IoT) devices across various sectors is driven by steadily increasingdemands for interconnected and smart technologies. Nevertheless, the surge in the number of IoT device hascaught the attention of cyber hackers, as it provides them with expanded avenues to access valuable data. Thishas resulted in a myriad of security challenges, including information leakage, malware propagation, and financialloss, among others. Consequently, developing an intrusion detection system to identify both active and potentialintrusion traffic in IoT networks is of paramount importance. In this paper, we propose ResNeSt-biGRU, a practicalintrusion detection model that combines the strengths of ResNeSt, a variant of Residual Neural Network, andbidirectionalGated RecurrentUnitNetwork (biGRU).Our ResNeSt-biGRUframework diverges fromconventionalintrusion detection systems (IDS) by employing this dual-layeredmechanism that exploits the temporal continuityand spatial feature within network data streams, a methodological innovation that enhances detection accuracy.In conjunction with this, we introduce the PreIoT dataset, a compilation of prevalent IoT network behaviors, totrain and evaluate IDSmodels with a focus on identifying potential intrusion traffics. The effectiveness of proposedscheme is demonstrated through testing, wherein it achieved an average accuracy of 99.90% on theN-BaIoT datasetas well as on the PreIoT dataset and 94.45% on UNSW-NB15 dataset. The outcomes of this research reveal thepotential of ResNeSt-biGRU to bolster security measures, diminish intrusion-related vulnerabilities, and preservethe overall security of IoT ecosystems.
基金This work was supported partially by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)Support Program(IITP-2024-2018-0-01431)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).
文摘The extensive utilization of the Internet in everyday life can be attributed to the substantial accessibility of online services and the growing significance of the data transmitted via the Internet.Regrettably,this development has expanded the potential targets that hackers might exploit.Without adequate safeguards,data transmitted on the internet is significantly more susceptible to unauthorized access,theft,or alteration.The identification of unauthorised access attempts is a critical component of cybersecurity as it aids in the detection and prevention of malicious attacks.This research paper introduces a novel intrusion detection framework that utilizes Recurrent Neural Networks(RNN)integrated with Long Short-Term Memory(LSTM)units.The proposed model can identify various types of cyberattacks,including conventional and distinctive forms.Recurrent networks,a specific kind of feedforward neural networks,possess an intrinsic memory component.Recurrent Neural Networks(RNNs)incorporating Long Short-Term Memory(LSTM)mechanisms have demonstrated greater capabilities in retaining and utilizing data dependencies over extended periods.Metrics such as data types,training duration,accuracy,number of false positives,and number of false negatives are among the parameters employed to assess the effectiveness of these models in identifying both common and unusual cyberattacks.RNNs are utilised in conjunction with LSTM to support human analysts in identifying possible intrusion events,hence enhancing their decision-making capabilities.A potential solution to address the limitations of Shallow learning is the introduction of the Eccentric Intrusion Detection Model.This model utilises Recurrent Neural Networks,specifically exploiting LSTM techniques.The proposed model achieves detection accuracy(99.5%),generalisation(99%),and false-positive rate(0.72%),the parameters findings reveal that it is superior to state-of-the-art techniques.
基金support and help from the People’s Armed Police Force of China Engineering University,College of Information Engineering Subject Group,which funded this work under the All-Army Military Theory Research Project,Armed Police Force Military Theory Research Project(WJJY22JL0498).
文摘In the face of the effective popularity of the Internet of Things(IoT),but the frequent occurrence of cybersecurity incidents,various cybersecurity protection means have been proposed and applied.Among them,Intrusion Detection System(IDS)has been proven to be stable and efficient.However,traditional intrusion detection methods have shortcomings such as lowdetection accuracy and inability to effectively identifymalicious attacks.To address the above problems,this paper fully considers the superiority of deep learning models in processing highdimensional data,and reasonable data type conversion methods can extract deep features and detect classification using advanced computer vision techniques to improve classification accuracy.TheMarkov TransformField(MTF)method is used to convert 1Dnetwork traffic data into 2D images,and then the converted 2D images are filtered by UnsharpMasking to enhance the image details by sharpening;to further improve the accuracy of data classification and detection,unlike using the existing high-performance baseline image classification models,a soft-voting integrated model,which integrates three deep learning models,MobileNet,VGGNet and ResNet,to finally obtain an effective IoT intrusion detection architecture:the MUS model.Four types of experiments are conducted on the publicly available intrusion detection dataset CICIDS2018 and the IoT network traffic dataset N_BaIoT,and the results demonstrate that the accuracy of attack traffic detection is greatly improved,which is not only applicable to the IoT intrusion detection environment,but also to different types of attacks and different network environments,which confirms the effectiveness of the work done.