The extensive access of network interaction has made present networks more responsive to earlier intrusions. In distributed network intrusions, there are many computing nodes that are assisted by intruders. The eviden...The extensive access of network interaction has made present networks more responsive to earlier intrusions. In distributed network intrusions, there are many computing nodes that are assisted by intruders. The evidence of intrusions is to be associated from all the held up nodes. From the last few years, mobile agent based technique in intrusion detection system (IDS) has been widely used to detect intrusion over distributed network. This paper presented survey of several existing mobile agent based intrusion detection system and comparative analysis report between them. Furthermore we have focused on each attribute of analysis, for example technique (NIDS, HIDS or Hybrid), behavior layer, detection techniques for analysis, uses of mobile agent and technology used by existing IDS, strength and issues. Their strengths and issues are situational wherever appropriate. We have observed that some of the existing techniques are used in IDS which causes low detection rate, behavior layers like TCP connection for packet capturing which is most important activity in NIDS and response time (technology execution time) with memory consumption by mobile agent as major issues.展开更多
Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,hi...Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.展开更多
Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to...Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments.展开更多
A new secured database management system architecture using intrusion detection systems(IDS)is proposed in this paper for organizations with no previous role mapping for users.A simple representation of Structured Que...A new secured database management system architecture using intrusion detection systems(IDS)is proposed in this paper for organizations with no previous role mapping for users.A simple representation of Structured Query Language queries is proposed to easily permit the use of the worked clustering algorithm.A new clustering algorithm that uses a tube search with adaptive memory is applied to database log files to create users’profiles.Then,queries issued for each user are checked against the related user profile using a classifier to determine whether or not each query is malicious.The IDS will stop query execution or report the threat to the responsible person if the query is malicious.A simple classifier based on the Euclidean distance is used and the issued query is transformed to the proposed simple representation using a classifier,where the Euclidean distance between the centers and the profile’s issued query is calculated.A synthetic data set is used for our experimental evaluations.Normal user access behavior in relation to the database is modelled using the data set.The false negative(FN)and false positive(FP)rates are used to compare our proposed algorithm with other methods.The experimental results indicate that our proposed method results in very small FN and FP rates.展开更多
In this paper,we propose a novel Intrusion Detection System (IDS) architecture utilizing both the evidence theory and Rough Set Theory (RST). Evidence theory is an effective tool in dealing with uncertainty question. ...In this paper,we propose a novel Intrusion Detection System (IDS) architecture utilizing both the evidence theory and Rough Set Theory (RST). Evidence theory is an effective tool in dealing with uncertainty question. It relies on the expert knowledge to provide evidences,needing the evidences to be independent,and this make it difficult in application. To solve this problem,a hybrid system of rough sets and evidence theory is proposed. Firstly,simplification are made based on Variable Precision Rough Set (VPRS) conditional entropy. Thus,the Basic Belief Assignment (BBA) for all evidences can be calculated. Secondly,Dempster’s rule of combination is used,and a decision-making is given. In the proposed approach,the difficulties in acquiring the BBAs are solved,the correlativity among the evidences is reduced and the subjectivity of evidences is weakened. An illustrative example in an intrusion detection shows that the two theories combination is feasible and effective.展开更多
Static secure techniques, such as firewall, hierarchy filtering, distributed disposing,layer management, autonomy agent, secure communication, were introduced in distributed intrusion detection. The self-protection ag...Static secure techniques, such as firewall, hierarchy filtering, distributed disposing,layer management, autonomy agent, secure communication, were introduced in distributed intrusion detection. The self-protection agents were designed, which have the distributed architecture,cooperate with the agents in intrusion detection in a loose-coupled manner, protect the security of intrusion detection system, and respond to the intrusion actively. A prototype self-protection agent was implemented by using the packet filter in operation system kernel. The results show that all the hosts with the part of network-based intrusion detection system and the whole intrusion detection system are invisible from the outside and network scanning, and cannot apperceive the existence of network-based intrusion detection system. The communication between every part is secure. In the low layer, the packet streams are controlled to avoid the buffer leaks exist ing in some system service process and back-door programs, so as to prevent users from misusing and vicious attack like Trojan Horse effectively.展开更多
Protecting networks against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their spe...Protecting networks against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete architecture of Intrusion Detection System (IDS). The main contribution of this architecture is its modularity and flexibility;i.e. it is designed and applicable, in four steps on intrusion detection process, consistent to the application domain and its required security level. Focus of this paper is on the heterogeneous WSNs and network-based IDS, by designing and deploying the Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the base station (sink). Finally, this paper has been designed a questionnaire to verify its idea, by using the acquired results from analyzing the questionnaires.展开更多
Support vector machine (SVM) technique has recently become a research focus in intrusion detection field for its better generalization performance when given less priori knowledge than other soft-computing techniques....Support vector machine (SVM) technique has recently become a research focus in intrusion detection field for its better generalization performance when given less priori knowledge than other soft-computing techniques. But the randomicity of parameter selection in its implement often prevents it achieving expected performance. By utilizing genetic algorithm (GA) to optimize the parameters in data preprocessing and the training model of SVM simultaneously, a hybrid optimization algorithm is proposed in the paper to address this problem. The experimental results demonstrate that it’s an effective method and can improve the performance of SVM-based intrusion detection system further.展开更多
A new network intrusion detection model based on immune multi-agent theory is established and the concept of multi-agents is advanced to realize the logical structure and running mechanism of immune multi-agent as wel...A new network intrusion detection model based on immune multi-agent theory is established and the concept of multi-agents is advanced to realize the logical structure and running mechanism of immune multi-agent as well as multi-level and distributed detection mechanism against network intrusion, using the adaptability, diversity and memory properties of artificial immune algorithm and combing the robustness and distributed character of multi-agents system structure. The experiment results conclude that this system is working pretty well in network security detection.展开更多
Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural N...Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural Network (DNN-RBFNN) architecture to enhance the accuracy and efficiency of IDS. The hybrid model synergizes the strengths of both dense learning and radial basis function networks, aiming to address the limitations of traditional IDS techniques in classifying packets that could result in Remote-to-local (R2L), Denial of Service (Dos), and User-to-root (U2R) intrusions.展开更多
Traditional Intrusion Detection System (IDS) based on hosts or networks no longer meets the security requirements in today's network environment due to the increasing complexity and distributivity. A multi-agent di...Traditional Intrusion Detection System (IDS) based on hosts or networks no longer meets the security requirements in today's network environment due to the increasing complexity and distributivity. A multi-agent distributed IDS model, enhanced with a method of computing its statistical values of performance is presented. This model can accomplish not only distributed information collection, but also distributed intrusion detection and real-time reaction. Owing to prompt reaction and openness, it can detect intrusion behavior of both known and unknown sources. According to preliminary tests, the accuracy ratio of intrusion detection is higher than 92% on the average.展开更多
Wi-Fi devices have limited battery life because of which conserving battery life is imperative. The 802.11 Wi-Fi standard provides power management feature that allows stations(STAs) to enter into sleep state to prese...Wi-Fi devices have limited battery life because of which conserving battery life is imperative. The 802.11 Wi-Fi standard provides power management feature that allows stations(STAs) to enter into sleep state to preserve energy without any frame losses. After the STA wakes up, it sends a null data or PS-Poll frame to retrieve frame(s) buffered by the access point(AP), if any during its sleep period. An attacker can launch a power save denial of service(PS-DoS) attack on the sleeping STA(s) by transmitting a spoofed null data or PS-Poll frame(s) to retrieve the buffered frame(s) of the sleeping STA(s) from the AP causing frame losses for the targeted STA(s). Current approaches to prevent or detect the PS-DoS attack require encryption,change in protocol or installation of proprietary hardware. These solutions suffer from expensive setup, maintenance, scalability and deployment issues. The PS-DoS attack does not differ in semantics or statistics under normal and attack circumstances.So signature and anomaly based intrusion detection system(IDS) are unfit to detect the PS-DoS attack. In this paper we propose a timed IDS based on real time discrete event system(RTDES) for detecting PS-DoS attack. The proposed DES based IDS overcomes the drawbacks of existing systems and detects the PS-DoS attack with high accuracy and detection rate. The correctness of the RTDES based IDS is proved by experimenting all possible attack scenarios.展开更多
With the development of Information technology and the popularization of Internet,whenever and wherever possible,people can connect to the Internet optionally.Meanwhile,the security of network traffic is threatened by...With the development of Information technology and the popularization of Internet,whenever and wherever possible,people can connect to the Internet optionally.Meanwhile,the security of network traffic is threatened by various of online malicious behaviors.The aim of an intrusion detection system(IDS)is to detect the network behaviors which are diverse and malicious.Since a conventional firewall cannot detect most of the malicious behaviors,such as malicious network traffic or computer abuse,some advanced learning methods are introduced and integrated with intrusion detection approaches in order to improve the performance of detection approaches.However,there are very few related studies focusing on both the effective detection for attacks and the representation for malicious behaviors with graph.In this paper,a novel intrusion detection approach IDBFG(Intrusion Detection Based on Feature Graph)is proposed which first filters normal connections with grid partitions,and then records the patterns of various attacks with a novel graph structure,and the behaviors in accordance with the patterns in graph are detected as intrusion behaviors.The experimental results on KDD-Cup 99 dataset show that IDBFG performs better than SVM(Supprot Vector Machines)and Decision Tree which are trained and tested in original feature space in terms of detection rates,false alarm rates and run time.展开更多
Writable XOR executable (W⊕X) and address space layout randomisation (ASLR) have elevated the understanding necessary to perpetrate buffer overflow exploits [1] . However, they have not proved to be a panacea [1 ...Writable XOR executable (W⊕X) and address space layout randomisation (ASLR) have elevated the understanding necessary to perpetrate buffer overflow exploits [1] . However, they have not proved to be a panacea [1 3] , and so other mechanisms, such as stack guards and prelinking, have been introduced. In this paper, we show that host-based protection still does not offer a complete solution. To demonstrate the protection inadequacies, we perform an over the network brute force return-to-libc attack against a preforking concurrent server to gain remote access to a shell. The attack defeats host protection including W⊕X and ASLR. We then demonstrate that deploying a network intrusion detection systems (NIDS) with appropriate signatures can detect this attack efficiently.展开更多
Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechani...Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry.However,real-time training and classifying network traffic pose challenges,as they can lead to the degradation of the overall dataset and difficulties preventing attacks.Additionally,existing semi-supervised learning research might need to analyze the experimental results comprehensively.This paper proposes XA-GANomaly,a novel technique for explainable adaptive semi-supervised learning using GANomaly,an image anomalous detection model that dynamically trains small subsets to these issues.First,this research introduces a deep neural network(DNN)-based GANomaly for semi-supervised learning.Second,this paper presents the proposed adaptive algorithm for the DNN-based GANomaly,which is validated with four subsets of the adaptive dataset.Finally,this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations,reconstruction error visualization,and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage,semi-supervised learning,and adaptive learning.Compared to other single-class classification techniques,the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13%and 8%of F1 scores and 4.17%and 11.51%for accuracy,respectively.Furthermore,experiments of the proposed adaptive learning reveal mostly improved results over the initial values.An analysis and monitoring system based on the combination of the three explainable methodologies is also described.Thus,the proposed method has the potential advantages to be applied in practical industry,and future research will explore handling unbalanced real-time datasets in various scenarios.展开更多
The exponential growth of Internet and network usage has neces-sitated heightened security measures to protect against data and network breaches.Intrusions,executed through network packets,pose a significant challenge...The exponential growth of Internet and network usage has neces-sitated heightened security measures to protect against data and network breaches.Intrusions,executed through network packets,pose a significant challenge for firewalls to detect and prevent due to the similarity between legit-imate and intrusion traffic.The vast network traffic volume also complicates most network monitoring systems and algorithms.Several intrusion detection methods have been proposed,with machine learning techniques regarded as promising for dealing with these incidents.This study presents an Intrusion Detection System Based on Stacking Ensemble Learning base(Random For-est,Decision Tree,and k-Nearest-Neighbors).The proposed system employs pre-processing techniques to enhance classification efficiency and integrates seven machine learning algorithms.The stacking ensemble technique increases performance by incorporating three base models(Random Forest,Decision Tree,and k-Nearest-Neighbors)and a meta-model represented by the Logistic Regression algorithm.Evaluated using the UNSW-NB15 dataset,the pro-posed IDS gained an accuracy of 96.16%in the training phase and 97.95%in the testing phase,with precision of 97.78%,and 98.40%for taring and testing,respectively.The obtained results demonstrate improvements in other measurement criteria.展开更多
Wireless networks are more vulnerable to cyberattacks than cable networks. Compared with the misuse intrusion detection techniques based on pattern matching, the techniques based on model checking(MC) have a series of...Wireless networks are more vulnerable to cyberattacks than cable networks. Compared with the misuse intrusion detection techniques based on pattern matching, the techniques based on model checking(MC) have a series of comparative advantages. However, the temporal logics employed in the existing latter techniques cannot express conveniently the complex attacks with synchronization phenomenon. To address this problem, we formalize a novel temporal logic language called attack signature description language(ASDL). On the basis of it, we put forward an ASDL model checking algorithm. Furthermore, we use ASDL programs, which can be considered as temporal logic formulas,to describe attack signatures, and employ other ASDL programs to create an audit log. As a result, the ASDL model checking algorithm can be presented for automatically verifying whether or not the latter programs satisfy the formulas, that is, whether or not the audit log coincides with the attack signatures. Thus,an intrusion detection algorithm based on ASDL is obtained. The case studies and simulations show that the new method can find coordinated chop-chop attacks.展开更多
Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their spe...Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete Intrusion Detection Architecture (IDA). The main contribution of this architecture is its hierarchical structure;i.e. it is designed and applicable, in one, two or three levels, consistent to the application domain and its required security level. Focus of this paper is on the clustering WSNs, designing and deploying Sensor-based Intrusion Detection System (SIDS) on sensor nodes, Cluster-based Intrusion Detection System (CIDS) on cluster-heads and Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the central server. Suppositions of the WSN and Intrusion Detection Architecture (IDA) are: static and heterogeneous network, hierarchical, distributed and clustering structure along with clusters' overlapping. Finally, this paper has been designed a questionnaire to verify the proposed idea;then it analyzed and evaluated the acquired results from the questionnaires.展开更多
Mobile ad-hoc networks(MANET)are garnering a lot of attention because of their potential to provide low-cost solutions to real-world communica-tions.MANETs are more vulnerable to security threats.Changes in nodes,band...Mobile ad-hoc networks(MANET)are garnering a lot of attention because of their potential to provide low-cost solutions to real-world communica-tions.MANETs are more vulnerable to security threats.Changes in nodes,band-width limits,and centralized control and management are some of the characteristics.IDS(Intrusion Detection System)are the aid for detection,deter-mination,and identification of illegal system activity such as use,copying,mod-ification,and destruction of data.To address the identified issues,academics have begun to concentrate on building IDS-based machine learning algorithms.Deep learning is a type of machine learning that can produce exceptional outcomes.This study proposes that WOA-DNN be used to detect and classify incursions in MANET(Whale Optimized Deep Neural Network Model)WOA(Whale Opti-mization Algorithm)and DNN(Deep Neural Network)are used to optimize the preprocessed data to construct a system for classifying and predicting unantici-pated cyber-attacks that are both effective and efficient.As a result,secure data transport to other nodes is provided,preventing intruder attacks.The invaders are found using the(Machine Learning)ML-IDS and WOA-DNN methods.The data is reduced in dimensionality using Principal Component Analysis(PCA),which improves the accuracy of the outputs.A classifier is used in forward propagation to predict whether a result is normal or malicious.To compare the traditional and proposed models’effectiveness,the accuracy of classification,detection of the attack rate,precision rate,and F-Measure,Recall are utilized.The proposed WOA-DNN model has higher assessment metrics and a 99.1%accuracy rate.WOA-DNN also has a greater assault detection rate than others,resulting in fewer false alarms.The classification accuracy of the proposed WOA-DNN model is 99.1%.展开更多
文摘The extensive access of network interaction has made present networks more responsive to earlier intrusions. In distributed network intrusions, there are many computing nodes that are assisted by intruders. The evidence of intrusions is to be associated from all the held up nodes. From the last few years, mobile agent based technique in intrusion detection system (IDS) has been widely used to detect intrusion over distributed network. This paper presented survey of several existing mobile agent based intrusion detection system and comparative analysis report between them. Furthermore we have focused on each attribute of analysis, for example technique (NIDS, HIDS or Hybrid), behavior layer, detection techniques for analysis, uses of mobile agent and technology used by existing IDS, strength and issues. Their strengths and issues are situational wherever appropriate. We have observed that some of the existing techniques are used in IDS which causes low detection rate, behavior layers like TCP connection for packet capturing which is most important activity in NIDS and response time (technology execution time) with memory consumption by mobile agent as major issues.
基金The authors would like to thank Princess Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2023R319)this research was funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.
基金the National High Technology Development "863" Program of China (2006AA01Z436, 2007AA01Z452)the National Natural Science Foundation of China(60702042).
文摘Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments.
文摘A new secured database management system architecture using intrusion detection systems(IDS)is proposed in this paper for organizations with no previous role mapping for users.A simple representation of Structured Query Language queries is proposed to easily permit the use of the worked clustering algorithm.A new clustering algorithm that uses a tube search with adaptive memory is applied to database log files to create users’profiles.Then,queries issued for each user are checked against the related user profile using a classifier to determine whether or not each query is malicious.The IDS will stop query execution or report the threat to the responsible person if the query is malicious.A simple classifier based on the Euclidean distance is used and the issued query is transformed to the proposed simple representation using a classifier,where the Euclidean distance between the centers and the profile’s issued query is calculated.A synthetic data set is used for our experimental evaluations.Normal user access behavior in relation to the database is modelled using the data set.The false negative(FN)and false positive(FP)rates are used to compare our proposed algorithm with other methods.The experimental results indicate that our proposed method results in very small FN and FP rates.
基金Supported by the National Natural Science Foundation of China (No. 60774029)
文摘In this paper,we propose a novel Intrusion Detection System (IDS) architecture utilizing both the evidence theory and Rough Set Theory (RST). Evidence theory is an effective tool in dealing with uncertainty question. It relies on the expert knowledge to provide evidences,needing the evidences to be independent,and this make it difficult in application. To solve this problem,a hybrid system of rough sets and evidence theory is proposed. Firstly,simplification are made based on Variable Precision Rough Set (VPRS) conditional entropy. Thus,the Basic Belief Assignment (BBA) for all evidences can be calculated. Secondly,Dempster’s rule of combination is used,and a decision-making is given. In the proposed approach,the difficulties in acquiring the BBAs are solved,the correlativity among the evidences is reduced and the subjectivity of evidences is weakened. An illustrative example in an intrusion detection shows that the two theories combination is feasible and effective.
文摘Static secure techniques, such as firewall, hierarchy filtering, distributed disposing,layer management, autonomy agent, secure communication, were introduced in distributed intrusion detection. The self-protection agents were designed, which have the distributed architecture,cooperate with the agents in intrusion detection in a loose-coupled manner, protect the security of intrusion detection system, and respond to the intrusion actively. A prototype self-protection agent was implemented by using the packet filter in operation system kernel. The results show that all the hosts with the part of network-based intrusion detection system and the whole intrusion detection system are invisible from the outside and network scanning, and cannot apperceive the existence of network-based intrusion detection system. The communication between every part is secure. In the low layer, the packet streams are controlled to avoid the buffer leaks exist ing in some system service process and back-door programs, so as to prevent users from misusing and vicious attack like Trojan Horse effectively.
文摘Protecting networks against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete architecture of Intrusion Detection System (IDS). The main contribution of this architecture is its modularity and flexibility;i.e. it is designed and applicable, in four steps on intrusion detection process, consistent to the application domain and its required security level. Focus of this paper is on the heterogeneous WSNs and network-based IDS, by designing and deploying the Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the base station (sink). Finally, this paper has been designed a questionnaire to verify its idea, by using the acquired results from analyzing the questionnaires.
基金This work was supported by the Research Grant of SEC E-Institute :Shanghai High Institution Grid and the Science Foundation ofShanghai Municipal Commission of Science and Technology No.00JC14052
文摘Support vector machine (SVM) technique has recently become a research focus in intrusion detection field for its better generalization performance when given less priori knowledge than other soft-computing techniques. But the randomicity of parameter selection in its implement often prevents it achieving expected performance. By utilizing genetic algorithm (GA) to optimize the parameters in data preprocessing and the training model of SVM simultaneously, a hybrid optimization algorithm is proposed in the paper to address this problem. The experimental results demonstrate that it’s an effective method and can improve the performance of SVM-based intrusion detection system further.
文摘A new network intrusion detection model based on immune multi-agent theory is established and the concept of multi-agents is advanced to realize the logical structure and running mechanism of immune multi-agent as well as multi-level and distributed detection mechanism against network intrusion, using the adaptability, diversity and memory properties of artificial immune algorithm and combing the robustness and distributed character of multi-agents system structure. The experiment results conclude that this system is working pretty well in network security detection.
文摘Intrusion Detection Systems (IDS) are pivotal in safeguarding computer networks from malicious activities. This study presents a novel approach by proposing a Hybrid Dense Neural Network-Radial Basis Function Neural Network (DNN-RBFNN) architecture to enhance the accuracy and efficiency of IDS. The hybrid model synergizes the strengths of both dense learning and radial basis function networks, aiming to address the limitations of traditional IDS techniques in classifying packets that could result in Remote-to-local (R2L), Denial of Service (Dos), and User-to-root (U2R) intrusions.
基金Supported by the Key Program of Natural Science Foundation of China(050335020)
文摘Traditional Intrusion Detection System (IDS) based on hosts or networks no longer meets the security requirements in today's network environment due to the increasing complexity and distributivity. A multi-agent distributed IDS model, enhanced with a method of computing its statistical values of performance is presented. This model can accomplish not only distributed information collection, but also distributed intrusion detection and real-time reaction. Owing to prompt reaction and openness, it can detect intrusion behavior of both known and unknown sources. According to preliminary tests, the accuracy ratio of intrusion detection is higher than 92% on the average.
基金supported by TATA Consultancy Servies(TCS)Research Fellowship Program,India
文摘Wi-Fi devices have limited battery life because of which conserving battery life is imperative. The 802.11 Wi-Fi standard provides power management feature that allows stations(STAs) to enter into sleep state to preserve energy without any frame losses. After the STA wakes up, it sends a null data or PS-Poll frame to retrieve frame(s) buffered by the access point(AP), if any during its sleep period. An attacker can launch a power save denial of service(PS-DoS) attack on the sleeping STA(s) by transmitting a spoofed null data or PS-Poll frame(s) to retrieve the buffered frame(s) of the sleeping STA(s) from the AP causing frame losses for the targeted STA(s). Current approaches to prevent or detect the PS-DoS attack require encryption,change in protocol or installation of proprietary hardware. These solutions suffer from expensive setup, maintenance, scalability and deployment issues. The PS-DoS attack does not differ in semantics or statistics under normal and attack circumstances.So signature and anomaly based intrusion detection system(IDS) are unfit to detect the PS-DoS attack. In this paper we propose a timed IDS based on real time discrete event system(RTDES) for detecting PS-DoS attack. The proposed DES based IDS overcomes the drawbacks of existing systems and detects the PS-DoS attack with high accuracy and detection rate. The correctness of the RTDES based IDS is proved by experimenting all possible attack scenarios.
基金This research was funded in part by the National Natural Science Foundation of China(61871140,61872100,61572153,U1636215,61572492,61672020)the National Key research and Development Plan(Grant No.2018YFB0803504)Open Fund of Beijing Key Laboratory of IOT Information Security Technology(J6V0011104).
文摘With the development of Information technology and the popularization of Internet,whenever and wherever possible,people can connect to the Internet optionally.Meanwhile,the security of network traffic is threatened by various of online malicious behaviors.The aim of an intrusion detection system(IDS)is to detect the network behaviors which are diverse and malicious.Since a conventional firewall cannot detect most of the malicious behaviors,such as malicious network traffic or computer abuse,some advanced learning methods are introduced and integrated with intrusion detection approaches in order to improve the performance of detection approaches.However,there are very few related studies focusing on both the effective detection for attacks and the representation for malicious behaviors with graph.In this paper,a novel intrusion detection approach IDBFG(Intrusion Detection Based on Feature Graph)is proposed which first filters normal connections with grid partitions,and then records the patterns of various attacks with a novel graph structure,and the behaviors in accordance with the patterns in graph are detected as intrusion behaviors.The experimental results on KDD-Cup 99 dataset show that IDBFG performs better than SVM(Supprot Vector Machines)and Decision Tree which are trained and tested in original feature space in terms of detection rates,false alarm rates and run time.
基金supported by National Natural Science Foundation of China (No. 60873208)
文摘Writable XOR executable (W⊕X) and address space layout randomisation (ASLR) have elevated the understanding necessary to perpetrate buffer overflow exploits [1] . However, they have not proved to be a panacea [1 3] , and so other mechanisms, such as stack guards and prelinking, have been introduced. In this paper, we show that host-based protection still does not offer a complete solution. To demonstrate the protection inadequacies, we perform an over the network brute force return-to-libc attack against a preforking concurrent server to gain remote access to a shell. The attack defeats host protection including W⊕X and ASLR. We then demonstrate that deploying a network intrusion detection systems (NIDS) with appropriate signatures can detect this attack efficiently.
基金supported by Korea Institute for Advancement of Technology(KIAT)grant funded by theKoreaGovernment(MOTIE)(P0008703,The CompetencyDevelopment Program for Industry Specialist).
文摘Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission.Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry.However,real-time training and classifying network traffic pose challenges,as they can lead to the degradation of the overall dataset and difficulties preventing attacks.Additionally,existing semi-supervised learning research might need to analyze the experimental results comprehensively.This paper proposes XA-GANomaly,a novel technique for explainable adaptive semi-supervised learning using GANomaly,an image anomalous detection model that dynamically trains small subsets to these issues.First,this research introduces a deep neural network(DNN)-based GANomaly for semi-supervised learning.Second,this paper presents the proposed adaptive algorithm for the DNN-based GANomaly,which is validated with four subsets of the adaptive dataset.Finally,this study demonstrates a monitoring system that incorporates three explainable techniques—Shapley additive explanations,reconstruction error visualization,and t-distributed stochastic neighbor embedding—to respond effectively to attacks on traffic data at each feature engineering stage,semi-supervised learning,and adaptive learning.Compared to other single-class classification techniques,the proposed DNN-based GANomaly achieves higher scores for Network Security Laboratory-Knowledge Discovery in Databases and UNSW-NB15 datasets at 13%and 8%of F1 scores and 4.17%and 11.51%for accuracy,respectively.Furthermore,experiments of the proposed adaptive learning reveal mostly improved results over the initial values.An analysis and monitoring system based on the combination of the three explainable methodologies is also described.Thus,the proposed method has the potential advantages to be applied in practical industry,and future research will explore handling unbalanced real-time datasets in various scenarios.
文摘The exponential growth of Internet and network usage has neces-sitated heightened security measures to protect against data and network breaches.Intrusions,executed through network packets,pose a significant challenge for firewalls to detect and prevent due to the similarity between legit-imate and intrusion traffic.The vast network traffic volume also complicates most network monitoring systems and algorithms.Several intrusion detection methods have been proposed,with machine learning techniques regarded as promising for dealing with these incidents.This study presents an Intrusion Detection System Based on Stacking Ensemble Learning base(Random For-est,Decision Tree,and k-Nearest-Neighbors).The proposed system employs pre-processing techniques to enhance classification efficiency and integrates seven machine learning algorithms.The stacking ensemble technique increases performance by incorporating three base models(Random Forest,Decision Tree,and k-Nearest-Neighbors)and a meta-model represented by the Logistic Regression algorithm.Evaluated using the UNSW-NB15 dataset,the pro-posed IDS gained an accuracy of 96.16%in the training phase and 97.95%in the testing phase,with precision of 97.78%,and 98.40%for taring and testing,respectively.The obtained results demonstrate improvements in other measurement criteria.
基金supported by the National Natural Science Foundation of China(U1204608,U1304606,61572444)the Postdoctoral Science Foundation of China(2012M511588,2015M572120)+2 种基金the National Key R&D Plan of China(2016YFB0800100)the Science Foundation for Young Key Teachers at the Universities of Henan Province(2014GGJS-001)the Science and Technology Development Project of Henan Province(152102410033)
文摘Wireless networks are more vulnerable to cyberattacks than cable networks. Compared with the misuse intrusion detection techniques based on pattern matching, the techniques based on model checking(MC) have a series of comparative advantages. However, the temporal logics employed in the existing latter techniques cannot express conveniently the complex attacks with synchronization phenomenon. To address this problem, we formalize a novel temporal logic language called attack signature description language(ASDL). On the basis of it, we put forward an ASDL model checking algorithm. Furthermore, we use ASDL programs, which can be considered as temporal logic formulas,to describe attack signatures, and employ other ASDL programs to create an audit log. As a result, the ASDL model checking algorithm can be presented for automatically verifying whether or not the latter programs satisfy the formulas, that is, whether or not the audit log coincides with the attack signatures. Thus,an intrusion detection algorithm based on ASDL is obtained. The case studies and simulations show that the new method can find coordinated chop-chop attacks.
文摘Networks protection against different types of attacks is one of most important posed issue into the network and information security domains. This problem on Wireless Sensor Networks (WSNs), in attention to their special properties, has more importance. Now, there are some of proposed solutions to protect Wireless Sensor Networks (WSNs) against different types of intrusions;but no one of them has a comprehensive view to this problem and they are usually designed in single-purpose;but, the proposed design in this paper has been a comprehensive view to this issue by presenting a complete Intrusion Detection Architecture (IDA). The main contribution of this architecture is its hierarchical structure;i.e. it is designed and applicable, in one, two or three levels, consistent to the application domain and its required security level. Focus of this paper is on the clustering WSNs, designing and deploying Sensor-based Intrusion Detection System (SIDS) on sensor nodes, Cluster-based Intrusion Detection System (CIDS) on cluster-heads and Wireless Sensor Network wide level Intrusion Detection System (WSNIDS) on the central server. Suppositions of the WSN and Intrusion Detection Architecture (IDA) are: static and heterogeneous network, hierarchical, distributed and clustering structure along with clusters' overlapping. Finally, this paper has been designed a questionnaire to verify the proposed idea;then it analyzed and evaluated the acquired results from the questionnaires.
文摘Mobile ad-hoc networks(MANET)are garnering a lot of attention because of their potential to provide low-cost solutions to real-world communica-tions.MANETs are more vulnerable to security threats.Changes in nodes,band-width limits,and centralized control and management are some of the characteristics.IDS(Intrusion Detection System)are the aid for detection,deter-mination,and identification of illegal system activity such as use,copying,mod-ification,and destruction of data.To address the identified issues,academics have begun to concentrate on building IDS-based machine learning algorithms.Deep learning is a type of machine learning that can produce exceptional outcomes.This study proposes that WOA-DNN be used to detect and classify incursions in MANET(Whale Optimized Deep Neural Network Model)WOA(Whale Opti-mization Algorithm)and DNN(Deep Neural Network)are used to optimize the preprocessed data to construct a system for classifying and predicting unantici-pated cyber-attacks that are both effective and efficient.As a result,secure data transport to other nodes is provided,preventing intruder attacks.The invaders are found using the(Machine Learning)ML-IDS and WOA-DNN methods.The data is reduced in dimensionality using Principal Component Analysis(PCA),which improves the accuracy of the outputs.A classifier is used in forward propagation to predict whether a result is normal or malicious.To compare the traditional and proposed models’effectiveness,the accuracy of classification,detection of the attack rate,precision rate,and F-Measure,Recall are utilized.The proposed WOA-DNN model has higher assessment metrics and a 99.1%accuracy rate.WOA-DNN also has a greater assault detection rate than others,resulting in fewer false alarms.The classification accuracy of the proposed WOA-DNN model is 99.1%.