The Cu/Invar composites of 40% Cu were prepared by powder metallurgy, and the composites were rolled with 70% reduction and subsequently annealed at 750 ℃. Phases, microstructures and properties of the composites wer...The Cu/Invar composites of 40% Cu were prepared by powder metallurgy, and the composites were rolled with 70% reduction and subsequently annealed at 750 ℃. Phases, microstructures and properties of the composites were then studied. After that, the amount of a-Fe(Ni,Co) in the composites is reduced, because a-Fe(Ni,Co) partly transfers into y-Fe(Ni,Co) through the diffusion of the Ni atoms into a-Fe(Ni,Co) from Cu. When the rolling reduction is less than 40%, the deformation of Cu takes place, resulting in the movement of the Invar particles and the seaming of the pores. When the rolling reduction is in the range from 40% to 60%, the deformations of Invar and Cu occur simultaneously to form a streamline structure. After rolling till 70% and subsequent annealing, the Cu/Invar composites have fine comprehensive properties with a relative density of 98.6%, a tensile strength of 360 MPa, an elongation rate of 50%, a thermal conductivity of 25.42 W/(m.K) (as-tested) and a CTE of 10.79× 10-6/K (20-100 ℃).展开更多
The Ag(Invar)composite powder prepared by ball milling was used to fabricate the Cu/Ag(Invar)composites.Microstructures and properties of the composites were studied after sintering and thermo-mechanical treatment.The...The Ag(Invar)composite powder prepared by ball milling was used to fabricate the Cu/Ag(Invar)composites.Microstructures and properties of the composites were studied after sintering and thermo-mechanical treatment.The results indicatethat during ball milling,micro-forging weld and work-hardening fracture result in that the average particle size of the Ag(Invar)powder increases rapidly at first,and then decreases sharply,finally tends to be constant.Compared with the Cu/Invar ones,thesinterability of the composites is greatly improved,resulting in that the pores in them are smaller in amount and size.After thethermo-mechanical treatment,the Cu/Ag(Invar)composites are nearly fully dense with the optimum phase composition and elementdistribution.More importantly,Cu and the Invar alloy in the composites distribute continuously in a three-dimensional(3D)networkstructure.Cu/Invar interface diffusion is effectively inhibited by the Ag barrier layer,leading to a great improvement of themechanical and thermal properties of the Cu/Ag(Invar)composites.展开更多
An orthogonal experiment scheme was designed to investigate the effects of the Cu content,compaction pressure,and sintering temperature on the microstructures and mechanical and thermal properties of(30−50)wt.%Cu/Inva...An orthogonal experiment scheme was designed to investigate the effects of the Cu content,compaction pressure,and sintering temperature on the microstructures and mechanical and thermal properties of(30−50)wt.%Cu/Invar bi-metal matrix composites fabricated via spark plasma sintering(SPS).The results indicated that as the Cu content increased from 30 to 50 wt.%,a continuous Cu network gradually appeared,and the density,thermal conductivity(TC)and coefficient of thermal expansion of the composites noticeably increased,but the tensile strength decreased.The increase in the sintering temperature promoted the Cu/Invar interface diffusion,leading to a reduction in the TC but an enhancement in the tensile strength of the composites.The compaction pressure comprehensively affected the thermal properties of the composites.The 50wt.%Cu/Invar composite sintered at 700℃ and 60 MPa had the highest TC(90.7 W/(m·K)),which was significantly higher than the TCs obtained for most of the previously reported Cu/Invar composites.展开更多
文摘The Cu/Invar composites of 40% Cu were prepared by powder metallurgy, and the composites were rolled with 70% reduction and subsequently annealed at 750 ℃. Phases, microstructures and properties of the composites were then studied. After that, the amount of a-Fe(Ni,Co) in the composites is reduced, because a-Fe(Ni,Co) partly transfers into y-Fe(Ni,Co) through the diffusion of the Ni atoms into a-Fe(Ni,Co) from Cu. When the rolling reduction is less than 40%, the deformation of Cu takes place, resulting in the movement of the Invar particles and the seaming of the pores. When the rolling reduction is in the range from 40% to 60%, the deformations of Invar and Cu occur simultaneously to form a streamline structure. After rolling till 70% and subsequent annealing, the Cu/Invar composites have fine comprehensive properties with a relative density of 98.6%, a tensile strength of 360 MPa, an elongation rate of 50%, a thermal conductivity of 25.42 W/(m.K) (as-tested) and a CTE of 10.79× 10-6/K (20-100 ℃).
基金Project(2014DFA50860) supported by the International Science&Technology Cooperation Program of China
文摘The Ag(Invar)composite powder prepared by ball milling was used to fabricate the Cu/Ag(Invar)composites.Microstructures and properties of the composites were studied after sintering and thermo-mechanical treatment.The results indicatethat during ball milling,micro-forging weld and work-hardening fracture result in that the average particle size of the Ag(Invar)powder increases rapidly at first,and then decreases sharply,finally tends to be constant.Compared with the Cu/Invar ones,thesinterability of the composites is greatly improved,resulting in that the pores in them are smaller in amount and size.After thethermo-mechanical treatment,the Cu/Ag(Invar)composites are nearly fully dense with the optimum phase composition and elementdistribution.More importantly,Cu and the Invar alloy in the composites distribute continuously in a three-dimensional(3D)networkstructure.Cu/Invar interface diffusion is effectively inhibited by the Ag barrier layer,leading to a great improvement of themechanical and thermal properties of the Cu/Ag(Invar)composites.
基金the International Science&Technology Cooperation Program of China(No.2014DFA50860).
文摘An orthogonal experiment scheme was designed to investigate the effects of the Cu content,compaction pressure,and sintering temperature on the microstructures and mechanical and thermal properties of(30−50)wt.%Cu/Invar bi-metal matrix composites fabricated via spark plasma sintering(SPS).The results indicated that as the Cu content increased from 30 to 50 wt.%,a continuous Cu network gradually appeared,and the density,thermal conductivity(TC)and coefficient of thermal expansion of the composites noticeably increased,but the tensile strength decreased.The increase in the sintering temperature promoted the Cu/Invar interface diffusion,leading to a reduction in the TC but an enhancement in the tensile strength of the composites.The compaction pressure comprehensively affected the thermal properties of the composites.The 50wt.%Cu/Invar composite sintered at 700℃ and 60 MPa had the highest TC(90.7 W/(m·K)),which was significantly higher than the TCs obtained for most of the previously reported Cu/Invar composites.