For two kinds of the Moebius invariant subspace A_l^(a,2)(D) and A_l^(-a,2)(D) of L^(a,2)(D), we define big and small Hankel operators H_b^(ll') and h_b^(ll') for the analytic symbol function b(z), and st...For two kinds of the Moebius invariant subspace A_l^(a,2)(D) and A_l^(-a,2)(D) of L^(a,2)(D), we define big and small Hankel operators H_b^(ll') and h_b^(ll') for the analytic symbol function b(z), and study their boundedness, compactness and Schatten-von Neumanu classes S_p-estimates, and hence develope Schatten -von Neumann properties of these op- erators.展开更多
文摘For two kinds of the Moebius invariant subspace A_l^(a,2)(D) and A_l^(-a,2)(D) of L^(a,2)(D), we define big and small Hankel operators H_b^(ll') and h_b^(ll') for the analytic symbol function b(z), and study their boundedness, compactness and Schatten-von Neumanu classes S_p-estimates, and hence develope Schatten -von Neumann properties of these op- erators.