Partial Differential Equation(PDE)is among the most fundamental tools employed to model dynamic systems.Existing PDE modeling methods are typically derived from established knowledge and known phenomena,which are time...Partial Differential Equation(PDE)is among the most fundamental tools employed to model dynamic systems.Existing PDE modeling methods are typically derived from established knowledge and known phenomena,which are time-consuming and labor-intensive.Recently,discovering governing PDEs from collected actual data via Physics Informed Neural Networks(PINNs)provides a more efficient way to analyze fresh dynamic systems and establish PEDmodels.This study proposes Sequentially Threshold Least Squares-Lasso(STLasso),a module constructed by incorporating Lasso regression into the Sequentially Threshold Least Squares(STLS)algorithm,which can complete sparse regression of PDE coefficients with the constraints of l0 norm.It further introduces PINN-STLasso,a physics informed neural network combined with Lasso sparse regression,able to find underlying PDEs from data with reduced data requirements and better interpretability.In addition,this research conducts experiments on canonical inverse PDE problems and compares the results to several recent methods.The results demonstrated that the proposed PINN-STLasso outperforms other methods,achieving lower error rates even with less data.展开更多
In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit n...In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit numerical method is employed to solve the direct problem.For the inverse problem,we first obtain the fractional sensitivity equation by means of the digamma function,and then we propose an efficient numerical method,that is,the Levenberg-Marquardt algorithm based on a fractional derivative,to estimate the unknown order of a Riemann-Liouville fractional derivative.In order to demonstrate the effectiveness of the proposed numerical method,two cases in which the measurement values contain random measurement error or not are considered.The computational results demonstrate that the proposed numerical method could efficiently obtain the optimal estimation of the unknown order of a RiemannLiouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.展开更多
Time-fractional diffusion equations are of great interest and importance on describing the power law decay for diffusion in porous media. In this paper, to identify the diffusion rate, i.e., the heterogeneity of mediu...Time-fractional diffusion equations are of great interest and importance on describing the power law decay for diffusion in porous media. In this paper, to identify the diffusion rate, i.e., the heterogeneity of medium, the authors consider an inverse coefficient problem utilizing finite measurements and obtain a local HSlder type conditional stability based upon two Carleman estimates for the corresponding differential equations of integer orders.展开更多
The inverse problem for harmonic waves and wave packets was studied based on a full dispersive wave equation. First, a full dispersive wave equation which describes wave propagation in nondissipative microstructured l...The inverse problem for harmonic waves and wave packets was studied based on a full dispersive wave equation. First, a full dispersive wave equation which describes wave propagation in nondissipative microstructured linear solids is established based on the Mindlin theory, and the dispersion characteristics are discussed. Second, based on the full dispersive wave equation, an inverse problem for determining the four unknown coefficients of wave equa- tion is posed in terms of the frequencies and corresponding wave numbers of four different harmonic waves, and the inverse problem is demonstrated with rigorous mathematical theory. Research proves that the coefficients of wave equation related to material properties can be uniquely determined in cases of normal and anomalous dispersions by measuring the frequen- cies and corresponding wave numbers of four different harmonic waves which propagate in a nondissipative microstructured linear solids.展开更多
In this paper, we consider the trace of generalized operators and inverse Weyl transformation.First of all we repeat the definition of test operators and generalized operators given in [18],denoting L~2(R) by H.
A Quasi-Newton method in Infinite-dimensional Spaces (QNIS) for solving operator equations is presellted and the convergence of a sequence generated by QNIS is also proved in the paper. Next, we suggest a finite-dimen...A Quasi-Newton method in Infinite-dimensional Spaces (QNIS) for solving operator equations is presellted and the convergence of a sequence generated by QNIS is also proved in the paper. Next, we suggest a finite-dimensional implementation of QNIS and prove that the sequence defined by the finite-dimensional algorithm converges to the root of the original operator equation providing that the later exists and that the Frechet derivative of the governing operator is invertible. Finally, we apply QNIS to an inverse problem for a parabolic differential equation to illustrate the efficiency of the finite-dimensional algorithm.展开更多
In this paper the inverse problem of determining the source term, which is independent of the time variable, of a linear, uniformly-parabolic equation is investigated. The uniqueness of the inverse problem is proved u...In this paper the inverse problem of determining the source term, which is independent of the time variable, of a linear, uniformly-parabolic equation is investigated. The uniqueness of the inverse problem is proved under mild assumptions by using the orthogonality method and an elimination method. The existence of the inverse problem is proved by means of the theory of solvable operators between Banach spaces; moreover, the continuous dependence on measurement of the solution to the inverse problem is also proved.展开更多
文摘Partial Differential Equation(PDE)is among the most fundamental tools employed to model dynamic systems.Existing PDE modeling methods are typically derived from established knowledge and known phenomena,which are time-consuming and labor-intensive.Recently,discovering governing PDEs from collected actual data via Physics Informed Neural Networks(PINNs)provides a more efficient way to analyze fresh dynamic systems and establish PEDmodels.This study proposes Sequentially Threshold Least Squares-Lasso(STLasso),a module constructed by incorporating Lasso regression into the Sequentially Threshold Least Squares(STLS)algorithm,which can complete sparse regression of PDE coefficients with the constraints of l0 norm.It further introduces PINN-STLasso,a physics informed neural network combined with Lasso sparse regression,able to find underlying PDEs from data with reduced data requirements and better interpretability.In addition,this research conducts experiments on canonical inverse PDE problems and compares the results to several recent methods.The results demonstrated that the proposed PINN-STLasso outperforms other methods,achieving lower error rates even with less data.
基金supported by the National Natural Science Foundation of China(Grants 11472161,11102102,and 91130017)the Independent Innovation Foundation of Shandong University(Grant 2013ZRYQ002)the Natural Science Foundation of Shandong Province(Grant ZR2014AQ015)
文摘In this paper,we propose a numerical method to estimate the unknown order of a Riemann-Liouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.The implicit numerical method is employed to solve the direct problem.For the inverse problem,we first obtain the fractional sensitivity equation by means of the digamma function,and then we propose an efficient numerical method,that is,the Levenberg-Marquardt algorithm based on a fractional derivative,to estimate the unknown order of a Riemann-Liouville fractional derivative.In order to demonstrate the effectiveness of the proposed numerical method,two cases in which the measurement values contain random measurement error or not are considered.The computational results demonstrate that the proposed numerical method could efficiently obtain the optimal estimation of the unknown order of a RiemannLiouville fractional derivative for a fractional Stokes' first problem for a heated generalized second grade fluid.
基金supported by the National Natural Science Foundation of China(No.11101093)Shanghai Science and Technology Commission(Nos.11ZR1402800,11PJ1400800)
文摘Time-fractional diffusion equations are of great interest and importance on describing the power law decay for diffusion in porous media. In this paper, to identify the diffusion rate, i.e., the heterogeneity of medium, the authors consider an inverse coefficient problem utilizing finite measurements and obtain a local HSlder type conditional stability based upon two Carleman estimates for the corresponding differential equations of integer orders.
基金supported by the National Natural Science Foundation of China(10862003,40564001)the Innovative Research Team Building Programs of Inner Mongolia University for Nationalities
文摘The inverse problem for harmonic waves and wave packets was studied based on a full dispersive wave equation. First, a full dispersive wave equation which describes wave propagation in nondissipative microstructured linear solids is established based on the Mindlin theory, and the dispersion characteristics are discussed. Second, based on the full dispersive wave equation, an inverse problem for determining the four unknown coefficients of wave equa- tion is posed in terms of the frequencies and corresponding wave numbers of four different harmonic waves, and the inverse problem is demonstrated with rigorous mathematical theory. Research proves that the coefficients of wave equation related to material properties can be uniquely determined in cases of normal and anomalous dispersions by measuring the frequen- cies and corresponding wave numbers of four different harmonic waves which propagate in a nondissipative microstructured linear solids.
文摘In this paper, we consider the trace of generalized operators and inverse Weyl transformation.First of all we repeat the definition of test operators and generalized operators given in [18],denoting L~2(R) by H.
文摘A Quasi-Newton method in Infinite-dimensional Spaces (QNIS) for solving operator equations is presellted and the convergence of a sequence generated by QNIS is also proved in the paper. Next, we suggest a finite-dimensional implementation of QNIS and prove that the sequence defined by the finite-dimensional algorithm converges to the root of the original operator equation providing that the later exists and that the Frechet derivative of the governing operator is invertible. Finally, we apply QNIS to an inverse problem for a parabolic differential equation to illustrate the efficiency of the finite-dimensional algorithm.
文摘In this paper the inverse problem of determining the source term, which is independent of the time variable, of a linear, uniformly-parabolic equation is investigated. The uniqueness of the inverse problem is proved under mild assumptions by using the orthogonality method and an elimination method. The existence of the inverse problem is proved by means of the theory of solvable operators between Banach spaces; moreover, the continuous dependence on measurement of the solution to the inverse problem is also proved.