Given a list of real numbers ∧={λ1,…, λn}, we determine the conditions under which ∧will form the spectrum of a dense n × n singular symmetric matrix. Based on a solvability lemma, an algorithm to compute th...Given a list of real numbers ∧={λ1,…, λn}, we determine the conditions under which ∧will form the spectrum of a dense n × n singular symmetric matrix. Based on a solvability lemma, an algorithm to compute the elements of the matrix is derived for a given list ∧ and dependency parameters. Explicit computations are performed for n≤5 and r≤4 to illustrate the result.展开更多
Let S∈Rn×n be a symmetric and nontrival involution matrix. We say that A∈E R n×n is a symmetric reflexive matrix if AT = A and SAS = A. Let S R r n×n(S)={A|A= AT,A = SAS, A∈Rn×n}. This paper dis...Let S∈Rn×n be a symmetric and nontrival involution matrix. We say that A∈E R n×n is a symmetric reflexive matrix if AT = A and SAS = A. Let S R r n×n(S)={A|A= AT,A = SAS, A∈Rn×n}. This paper discusses the following two problems. The first one is as follows. Given Z∈Rn×m (m < n),∧= diag(λ1,...,λm)∈Rm×m, andα,β∈R withα<β. Find a subset (?)(Z,∧,α,β) of SRrn×n(S) such that AZ = Z∧holds for any A∈(?)(Z,∧,α,β) and the remaining eigenvaluesλm+1 ,...,λn of A are located in the interval [α,β], Moreover, for a given B∈Rn×n, the second problem is to find AB∈(?)(Z,∧,α,β) such that where ||.|| is the Frobenius norm. Using the properties of symmetric reflexive matrices, the two problems are essentially decomposed into the same kind of subproblems for two real symmetric matrices with smaller dimensions, and then the expressions of the general solution for the two problems are derived.展开更多
Censider the solutions of the matrix inverse problem, which are symmetric positive semide finite on a subspace. Necessary and sufficient conditions for the solvability, as well as the general solution are obtained. Th...Censider the solutions of the matrix inverse problem, which are symmetric positive semide finite on a subspace. Necessary and sufficient conditions for the solvability, as well as the general solution are obtained. The best approximate solution by the above solution set is given. Thus the open problem in [1] is solved.展开更多
In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywher...In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywhere.Then adopting the method used in [14],we present some sufficient conditions such that the generalized inverse eigenvalue problems are unsohable almost everywhere.展开更多
The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such th...The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such that AX = X(?), where BSHn×n≥ denotes the set of all n×n quaternion matrices which are bi-self-conjugate and nonnegative definite. Problem Ⅱ2= Given B ∈ Hn×m, find B ∈ SE such that ||B-B||Q = minAE∈=sE ||B-A||Q, where SE is the solution set of problem I , || ·||Q is the quaternion matrix norm. The necessary and sufficient conditions for SE being nonempty are obtained. The general form of elements in SE and the expression of the unique solution B of problem Ⅱ are given.展开更多
In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is al...In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is also given.展开更多
In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of co...In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.展开更多
In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge an ...In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge an NIEP whether is solvable.展开更多
By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-H...By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.展开更多
Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the c...Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the complementary matrix of H11. In this paper, H is constructed uniquely when its eigenvalues and the eigenvalues of (H|^)11 and (H|^)22 are known. Here (H|^)11 and (H|^)22 are rank-one modifications of H11 and H22 respectively.展开更多
In this article,we discuss singular Hermitian matrices of rank greater or equal to four for an inverse eigenvalue problem.Specifically,we look into how to generate n by n singular Hermitian matrices of ranks four and ...In this article,we discuss singular Hermitian matrices of rank greater or equal to four for an inverse eigenvalue problem.Specifically,we look into how to generate n by n singular Hermitian matrices of ranks four and five from a prescribed spectrum.Numerical examples are presented in each case to illustrate these scenarios.It was established that given a prescribed spectral datum and it multiplies,then the solubility of the inverse eigenvalue problem for n by n singular Hermitian matrices of rank r exists.展开更多
The estimate of the eigenvalues is given when the off-diagonal elements in symmetric tridiagonal matrix are replaced by zero. The result can be applied to QR or QL algorithm. It is a generalization of Jiang’ s result...The estimate of the eigenvalues is given when the off-diagonal elements in symmetric tridiagonal matrix are replaced by zero. The result can be applied to QR or QL algorithm. It is a generalization of Jiang’ s result in 1987. This estimate is sharper than Hager’s result in 1982 and could not展开更多
The tridiagonal coefficient matrix for the "fixed-fixed" spring-mass system was obtained by changing spring length. And then a new algorithm of the inverse problem was designed to construct the masses and the spring...The tridiagonal coefficient matrix for the "fixed-fixed" spring-mass system was obtained by changing spring length. And then a new algorithm of the inverse problem was designed to construct the masses and the spring constants from the natural frequencies of the "fixed-fixed" and "fixed-fres" spring-mass systems. An example was given to illustrate the results.展开更多
It has been extensively recognized that the engineering structures are becoming increasingly precise and complex,which makes the requirements of design and analysis more and more rigorous.Therefore the uncertainty eff...It has been extensively recognized that the engineering structures are becoming increasingly precise and complex,which makes the requirements of design and analysis more and more rigorous.Therefore the uncertainty effects are indispensable during the process of product development.Besides,iterative calculations,which are usually unaffordable in calculative efforts,are unavoidable if we want to achieve the best design.Taking uncertainty effects into consideration,matrix perturbation methodpermits quick sensitivity analysis and structural dynamic re-analysis,it can also overcome the difficulties in computational costs.Owing to the situations above,matrix perturbation method has been investigated by researchers worldwide recently.However,in the existing matrix perturbation methods,correlation coefficient matrix of random structural parameters,which is barely achievable in engineering practice,has to be given or to be assumed during the computational process.This has become the bottleneck of application for matrix perturbation method.In this paper,we aim to develop an executable approach,which contributes to the application of matrix perturbation method.In the present research,the first-order perturbation of structural vibration eigenvalues and eigenvectors is derived on the basis of the matrix perturbation theory when structural parameters such as stiffness and mass have changed.Combining the first-order perturbation of structural vibration eigenvalues and eigenvectors with the probability theory,the variance of structural random eigenvalue is derived from the perturbation of stiffness matrix,the perturbation of mass matrix and the eigenvector of baseline-structure directly.Hence the Direct-VarianceAnalysis(DVA)method is developed to assess the variation range of the structural random eigenvalues without correlation coefficient matrix being involved.The feasibility of the DVA method is verified with two numerical examples(one is trusssystem and the other is wing structure of MA700 commercial aircraft),in which the DVA method also shows superiority in computational efficiency when compared to the Monte-Carlo method.展开更多
This paper establishes an improvement on the QL algorithm for a symmetric tridiagonal matrix T so that we can work out the eigenvalues of T faster. Meanwhile, the new algorithm don’t worsen the stability and precisio...This paper establishes an improvement on the QL algorithm for a symmetric tridiagonal matrix T so that we can work out the eigenvalues of T faster. Meanwhile, the new algorithm don’t worsen the stability and precision of the former algorithm.展开更多
QL(QR) method is an efficient method to find eigenvalues of a matrix. Especially we use QL(QR) method to find eigenvalues of a symmetric tridiagonal matrix. In this case it only costs O(n2) flops, to find all eigenval...QL(QR) method is an efficient method to find eigenvalues of a matrix. Especially we use QL(QR) method to find eigenvalues of a symmetric tridiagonal matrix. In this case it only costs O(n2) flops, to find all eigenvalues. So it is one of the most efficient method for symmetric tridiagonal matrices. Many experts have researched it. Even the method is mature, it still has many problems need to be researched. We put forward five problems here. They are: (1) Convergence and convergence rate; (2) The convergence of diagonal elements; (3) Shift designed to produce the eigenvalues in monotone order; (4) QL algorithm with multi-shift; (5) Error bound. We intoduce our works on these problems, some of them were published and some are new.展开更多
In this paper,we describe how to construct a real anti-symmetric(2p-1)-band matrix with prescribed eigenvalues in its ρ leading principal submatrices.This is done in two steps.First,an anti-symmetric matrix B is cons...In this paper,we describe how to construct a real anti-symmetric(2p-1)-band matrix with prescribed eigenvalues in its ρ leading principal submatrices.This is done in two steps.First,an anti-symmetric matrix B is constructed with the specified spectral data but not necessary a band matrix.Then B is transformed by Householder transformations to a (2ρ-1)-band matrix with the prescribed eigenvalues.An algorithm is presented.Numerical results are presented to demonstrate that the proposed method is effective.展开更多
文摘Given a list of real numbers ∧={λ1,…, λn}, we determine the conditions under which ∧will form the spectrum of a dense n × n singular symmetric matrix. Based on a solvability lemma, an algorithm to compute the elements of the matrix is derived for a given list ∧ and dependency parameters. Explicit computations are performed for n≤5 and r≤4 to illustrate the result.
基金Research supported by the National Natural Science Foundation of China. (10571047)
文摘Let S∈Rn×n be a symmetric and nontrival involution matrix. We say that A∈E R n×n is a symmetric reflexive matrix if AT = A and SAS = A. Let S R r n×n(S)={A|A= AT,A = SAS, A∈Rn×n}. This paper discusses the following two problems. The first one is as follows. Given Z∈Rn×m (m < n),∧= diag(λ1,...,λm)∈Rm×m, andα,β∈R withα<β. Find a subset (?)(Z,∧,α,β) of SRrn×n(S) such that AZ = Z∧holds for any A∈(?)(Z,∧,α,β) and the remaining eigenvaluesλm+1 ,...,λn of A are located in the interval [α,β], Moreover, for a given B∈Rn×n, the second problem is to find AB∈(?)(Z,∧,α,β) such that where ||.|| is the Frobenius norm. Using the properties of symmetric reflexive matrices, the two problems are essentially decomposed into the same kind of subproblems for two real symmetric matrices with smaller dimensions, and then the expressions of the general solution for the two problems are derived.
文摘Censider the solutions of the matrix inverse problem, which are symmetric positive semide finite on a subspace. Necessary and sufficient conditions for the solvability, as well as the general solution are obtained. The best approximate solution by the above solution set is given. Thus the open problem in [1] is solved.
文摘In this paper the unsolvability of generalized inverse eigenvalue problems almost everywhere is discussed.We first give the definitions for the unsolvability of generalized inverse eigenvalue problems almost everywhere.Then adopting the method used in [14],we present some sufficient conditions such that the generalized inverse eigenvalue problems are unsohable almost everywhere.
基金This work is supported by the NSF of China (10471039, 10271043) and NSF of Zhejiang Province (M103087).
文摘The main aim of this paper is to discuss the following two problems: Problem I: Given X ∈ Hn×m (the set of all n×m quaternion matrices), A = diag(λ1,…, λm) EEEEE Hm×m, find A ∈ BSHn×n≥such that AX = X(?), where BSHn×n≥ denotes the set of all n×n quaternion matrices which are bi-self-conjugate and nonnegative definite. Problem Ⅱ2= Given B ∈ Hn×m, find B ∈ SE such that ||B-B||Q = minAE∈=sE ||B-A||Q, where SE is the solution set of problem I , || ·||Q is the quaternion matrix norm. The necessary and sufficient conditions for SE being nonempty are obtained. The general form of elements in SE and the expression of the unique solution B of problem Ⅱ are given.
基金Project supported by the National Natural Science Foundation of China (Grant No.10271074)
文摘In this paper, an inverse problem on Jacobi matrices presented by Shieh in 2004 is studied. Shieh's result is improved and a new and stable algorithm to reconstruct its solution is given. The numerical examples is also given.
文摘In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it.
文摘In this paper, we give solvability conditions for three open problems of nonnegative inverse eigenvalues problem (NIEP) which were left hanging in the air up to seventy years. It will offer effective ways to judge an NIEP whether is solvable.
基金Project(10171031) supported by the National Natural Science Foundation of China
文摘By using the characteristic properties of the anti-Hermitian generalized anti-Hamiltonian matrices, we prove some necessary and sufficient conditions of the solvability for algebra inverse eigenvalue problem of anti-Hermitian generalized anti-Hamiltonian matrices, and obtain a general expression of the solution to this problem. By using the properties of the orthogonal projection matrix, we also obtain the expression of the solution to optimal approximate problem of an n× n complex matrix under spectral restriction.
基金This work is supported by the Natural Science Foundation of Fujian Province of China (No. Z0511010)the Natural Science Foundation of China (No. 10571012).
文摘Let H∈Cn×n be an n×n unitary upper Hessenberg matrix whose subdiagonal elements are all positive. Partition H as H=[H11 H12 H21 H22],(0.1) where H11 is its k×k leading principal submatrix; H22 is the complementary matrix of H11. In this paper, H is constructed uniquely when its eigenvalues and the eigenvalues of (H|^)11 and (H|^)22 are known. Here (H|^)11 and (H|^)22 are rank-one modifications of H11 and H22 respectively.
文摘In this article,we discuss singular Hermitian matrices of rank greater or equal to four for an inverse eigenvalue problem.Specifically,we look into how to generate n by n singular Hermitian matrices of ranks four and five from a prescribed spectrum.Numerical examples are presented in each case to illustrate these scenarios.It was established that given a prescribed spectral datum and it multiplies,then the solubility of the inverse eigenvalue problem for n by n singular Hermitian matrices of rank r exists.
文摘The estimate of the eigenvalues is given when the off-diagonal elements in symmetric tridiagonal matrix are replaced by zero. The result can be applied to QR or QL algorithm. It is a generalization of Jiang’ s result in 1987. This estimate is sharper than Hager’s result in 1982 and could not
基金Project supported by the National Natural Science Foundation of China(Grant No.10271074)
文摘The tridiagonal coefficient matrix for the "fixed-fixed" spring-mass system was obtained by changing spring length. And then a new algorithm of the inverse problem was designed to construct the masses and the spring constants from the natural frequencies of the "fixed-fixed" and "fixed-fres" spring-mass systems. An example was given to illustrate the results.
基金supported by the AVIC Research Project(Grant No.cxy2012BH07)the National Natural Science Foundation of China(Grant Nos.10872017,90816024,10876100)+1 种基金the Defense Industrial Technology Development Program(Grant Nos.A2120110001,B2120110011,A082013-2001)"111" Project(Grant No.B07009)
文摘It has been extensively recognized that the engineering structures are becoming increasingly precise and complex,which makes the requirements of design and analysis more and more rigorous.Therefore the uncertainty effects are indispensable during the process of product development.Besides,iterative calculations,which are usually unaffordable in calculative efforts,are unavoidable if we want to achieve the best design.Taking uncertainty effects into consideration,matrix perturbation methodpermits quick sensitivity analysis and structural dynamic re-analysis,it can also overcome the difficulties in computational costs.Owing to the situations above,matrix perturbation method has been investigated by researchers worldwide recently.However,in the existing matrix perturbation methods,correlation coefficient matrix of random structural parameters,which is barely achievable in engineering practice,has to be given or to be assumed during the computational process.This has become the bottleneck of application for matrix perturbation method.In this paper,we aim to develop an executable approach,which contributes to the application of matrix perturbation method.In the present research,the first-order perturbation of structural vibration eigenvalues and eigenvectors is derived on the basis of the matrix perturbation theory when structural parameters such as stiffness and mass have changed.Combining the first-order perturbation of structural vibration eigenvalues and eigenvectors with the probability theory,the variance of structural random eigenvalue is derived from the perturbation of stiffness matrix,the perturbation of mass matrix and the eigenvector of baseline-structure directly.Hence the Direct-VarianceAnalysis(DVA)method is developed to assess the variation range of the structural random eigenvalues without correlation coefficient matrix being involved.The feasibility of the DVA method is verified with two numerical examples(one is trusssystem and the other is wing structure of MA700 commercial aircraft),in which the DVA method also shows superiority in computational efficiency when compared to the Monte-Carlo method.
文摘This paper establishes an improvement on the QL algorithm for a symmetric tridiagonal matrix T so that we can work out the eigenvalues of T faster. Meanwhile, the new algorithm don’t worsen the stability and precision of the former algorithm.
文摘QL(QR) method is an efficient method to find eigenvalues of a matrix. Especially we use QL(QR) method to find eigenvalues of a symmetric tridiagonal matrix. In this case it only costs O(n2) flops, to find all eigenvalues. So it is one of the most efficient method for symmetric tridiagonal matrices. Many experts have researched it. Even the method is mature, it still has many problems need to be researched. We put forward five problems here. They are: (1) Convergence and convergence rate; (2) The convergence of diagonal elements; (3) Shift designed to produce the eigenvalues in monotone order; (4) QL algorithm with multi-shift; (5) Error bound. We intoduce our works on these problems, some of them were published and some are new.
文摘In this paper,we describe how to construct a real anti-symmetric(2p-1)-band matrix with prescribed eigenvalues in its ρ leading principal submatrices.This is done in two steps.First,an anti-symmetric matrix B is constructed with the specified spectral data but not necessary a band matrix.Then B is transformed by Householder transformations to a (2ρ-1)-band matrix with the prescribed eigenvalues.An algorithm is presented.Numerical results are presented to demonstrate that the proposed method is effective.