期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Inverse stochastic resonance in modular neural network with synaptic plasticity
1
作者 于永涛 杨晓丽 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期45-52,共8页
This work explores the inverse stochastic resonance(ISR) induced by bounded noise and the multiple inverse stochastic resonance induced by time delay by constructing a modular neural network, where the modified Oja’s... This work explores the inverse stochastic resonance(ISR) induced by bounded noise and the multiple inverse stochastic resonance induced by time delay by constructing a modular neural network, where the modified Oja’s synaptic learning rule is employed to characterize synaptic plasticity in this network. Meanwhile, the effects of synaptic plasticity on the ISR dynamics are investigated. Through numerical simulations, it is found that the mean firing rate curve under the influence of bounded noise has an inverted bell-like shape, which implies the appearance of ISR. Moreover, synaptic plasticity with smaller learning rate strengthens this ISR phenomenon, while synaptic plasticity with larger learning rate weakens or even destroys it. On the other hand, the mean firing rate curve under the influence of time delay is found to exhibit a decaying oscillatory process, which represents the emergence of multiple ISR. However, the multiple ISR phenomenon gradually weakens until it disappears with increasing noise amplitude. On the same time, synaptic plasticity with smaller learning rate also weakens this multiple ISR phenomenon, while synaptic plasticity with larger learning rate strengthens it. Furthermore, we find that changes of synaptic learning rate can induce the emergence of ISR phenomenon. We hope these obtained results would provide new insights into the study of ISR in neuroscience. 展开更多
关键词 inverse stochastic resonance synaptic plasticity modular neural network
下载PDF
Effects of potassium channel blockage on inverse stochastic resonance in Hodgkin-Huxley neural systems
2
作者 Xueqing WANG Dong YU +3 位作者 Yong WU Qianming DING Tianyu LI Ya JIA 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第8期735-748,共14页
Inverse stochastic resonance(ISR)is a phenomenon in which the firing activity of a neuron is inhibited at a certain noise level.In this paper,the effects of potassium channel blockage on ISR in single Hodgkin-Huxley n... Inverse stochastic resonance(ISR)is a phenomenon in which the firing activity of a neuron is inhibited at a certain noise level.In this paper,the effects of potassium channel blockage on ISR in single Hodgkin-Huxley neurons and in small-world networks were investigated.For the single neuron,the ion channel noise-induced ISR phenomenon can occur only in a certain small range of potassium channel blockage ratio.Bifurcation analysis showed that this small range is the bistable region regulated by the external bias current.For small-world networks,the effect of non-homogeneous network blockage on ISR was investigated.The network blockage ratio was used to represent the proportion of potassium-channel-blocked neurons to total network neurons.It is found that an increase in network blockage ratio at small coupling strengths results in shorter ISR duration.When the coupling strength is increased,the ISR is more significant in the case of a large network blockage ratio.The ISR phenomenon is determined by the network blockage ratio,the coupling strength,and the ion channel noise.Our results will provide new perspectives on the observation of ISR in neuroscience experiments. 展开更多
关键词 inverse stochastic resonance(ISR) Small-world neuronal network Potassium channel blockage Network blockage ratio
原文传递
Inhibitory effect induced by fractional Gaussian noise in neuronal system
3
作者 李智坤 李东喜 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期145-152,共8页
We discover a phenomenon of inhibition effect induced by fractional Gaussian noise in a neuronal system. Firstly,essential properties of fractional Brownian motion(fBm) and generation of fractional Gaussian noise(fGn)... We discover a phenomenon of inhibition effect induced by fractional Gaussian noise in a neuronal system. Firstly,essential properties of fractional Brownian motion(fBm) and generation of fractional Gaussian noise(fGn) are presented,and representative sample paths of fBm and corresponding spectral density of fGn are discussed at different Hurst indexes.Next, we consider the effect of fGn on neuronal firing, and observe that neuronal firing decreases first and then increases with increasing noise intensity and Hurst index of fGn by studying the time series evolution. To further quantify the inhibitory effect of fGn, by introducing the average discharge rate, we investigate the effects of noise and external current on neuronal firing, and find the occurrence of inhibitory effect about noise intensity and Hurst index of f Gn at a certain level of current. Moreover, the inhibition effect is not easy to occur when the noise intensity and Hurst index are too large or too small. In view of opposite action mechanism compared with stochastic resonance, this suppression phenomenon is called inverse stochastic resonance(ISR). Finally, the inhibitory effect induced by fGn is further verified based on the inter-spike intervals(ISIs) in the neuronal system. Our work lays a solid foundation for future study of non-Gaussian-type noise on neuronal systems. 展开更多
关键词 inhibitory effect inverse stochastic resonance fractional Gaussian noise neuronal system
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部