期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Analysis of a Wenzhou-Hitting Exceptionally Strong Rainstorm Associated with a Typhoon Inverted Trough in September,1999
1
作者 郑峰 《Marine Science Bulletin》 CAS 2010年第1期39-47,共9页
Using T106 numerical products, MM5 simulations in conjunction of Q-vector scheme-computed NCEP results, observations and satellite cloud images, study is undertaken for an exceptionally intense rainstorm event afflict... Using T106 numerical products, MM5 simulations in conjunction of Q-vector scheme-computed NCEP results, observations and satellite cloud images, study is undertaken for an exceptionally intense rainstorm event afflicting the Wenzhou region of Zhejiang province far away from the tropical storm center happening early on the morning of September 4, 1999 (TS9909 hereinafter). Evidence suggests that, like previously-studied typhoons landing in autumn south of Xiamen to the eastern part of Guangdong, TS9909 has an inverted trough in the central south of the coastal belt of Zhejiang province that produces the rainstorm from the meso convective complex (MCC) on the warm, moist shear inside; the time and order of the magnitude of the rainfall are bound up with the development of the pattern of strong Q-vector divergence gradients during the event for the study area; the NE - SW coastline and the unique topography of the Yandang mountains inside the region are favorable for air lifting are the major contributors to the torrential rains. 展开更多
关键词 long-distance-away typhoon rainstorm inverted trough MCC Q-vector divergence gradient
下载PDF
Analysis of a Beijing Heavy Snowfall Related to an Inverted Trough in November 2009 被引量:8
2
作者 LI Jin ZHAO Si-Xiong and YU Feil 《Atmospheric and Oceanic Science Letters》 2010年第3期127-131,共5页
This paper studies a heavy snowfall in Beijing that took place on 1 November 2009. The date of the snowfall was about one month earlier than the average. The National Centers for Environmental Prediction (NCEP) reanal... This paper studies a heavy snowfall in Beijing that took place on 1 November 2009. The date of the snowfall was about one month earlier than the average. The National Centers for Environmental Prediction (NCEP) reanalysis data, conventional data, and Automatic Weather Station (AWS) data are utilized to explore the reasons for the snowfall and the influencing systems. The main conclusions are as follows: (1) It is revealed from the average geopotential height and average temperature fields at 500 hPa that the large scale circulation in November 2009 was favorable to snowfall. The cold-dry air from West Siberia and the warm-moist air from the Bay of Bengal converged in North China. In addition, it was found from the average moisture flux field at 700 hPa that the main water vapor source was in the Bay of Bengal. (2) Not only the "return current", as usually accepted, but also the inverted trough on the current had an important contribution to the snowfall. The inverted trough could produce the obvious upward motion that is an important environmental condition of snowfalls. (3) More attention should be paid to mesoscale systems such as mesolows during the cold season because of their importance, though they do not occur as frequently as in the warm season. It should be pointed out that AWS data are very useful in mesoscale system analysis during both warm and cold seasons. 展开更多
关键词 cold wave SNOWFALL precipitation type inverted trough mesolow
下载PDF
Analysis of a Rare Heavy Rain Weather Process in Autumn in Ulanqab City
3
作者 Xinyu CHEN Nan ZHAO +1 位作者 Wenying YU Chao FAN 《Meteorological and Environmental Research》 2024年第2期1-3,9,共4页
Based on the conventional observation data and NCEP/NCAR reanalysis data,the circulation situation,influencing systems and causes of the heavy rain during September 20-21,2010 in Ulanqab City were analyzed from the ev... Based on the conventional observation data and NCEP/NCAR reanalysis data,the circulation situation,influencing systems and causes of the heavy rain during September 20-21,2010 in Ulanqab City were analyzed from the evolution process of weather circulation situation and the changes of various physical quantity fields.The results show that there was an obvious frontal zone between 45-52°N,which brought strong cold air.The transport of warm and humid air outside the subtropical high and typhoon was the main water vapor source of the strong precipitation,and the southwest jet at 700 hPa transported abundant water vapor.There was a broad inverted trough to the south of 45°N,with a central value of 1000.0 hPa.Ulanqab City was on the top of the inverted trough,stable and less moved,which was conducive to the occurrence of systematic heavy precipitation.The rainstorm was a strong precipitation process caused by the intersection of cold air brought by the southward movement of the upper frontal zone and warm and humid air outside the subtropical high.After the precipitation,the invasion of strong cold air brought frost and cold wave weather to Ulanqab City. 展开更多
关键词 Frontal zone Subtropical high inverted trough FROST Ulanqab City
下载PDF
Analysis of the Heavy Rainfall Process in Mangshi City on August 8, 2023
4
作者 Yan YU Bowen LIU +2 位作者 Wan GONG Shuxuan HE Lei WEI 《Meteorological and Environmental Research》 2024年第2期48-54,61,共8页
On August 7,2023,Mangshi City,Dehong Prefecture experienced a local heavy rainstorm,and the geological disaster caused by the heavy rainfall caused casualties and property losses.Based on the real-time observation dat... On August 7,2023,Mangshi City,Dehong Prefecture experienced a local heavy rainstorm,and the geological disaster caused by the heavy rainfall caused casualties and property losses.Based on the real-time observation data of automatic stations,Doppler weather radar detection and meteorological risk warning products,the disaster situation,social impact,forecast and early warning service,causes of heavy precipitation and forecast and early warning inspection were summarized and analyzed.The results show that the heavy rainfall was prominent locally,lasted for a long time and accumulated a large amount of rainfall.There were biases in model products,and it was difficult for forecasters to make subjective corrections in complex terrain.The analysis ideas and focus points of heavy rainfall forecast,the improvement ideas and technical schemes of forecast deviation,and the improvement ideas and suggestions of services were summarized.It provides a reference for the forecast and early warning of severe weather in the future. 展开更多
关键词 Heavy rainfall Low-pressure inverted trough Geological disaster Forecast deviation
下载PDF
A comparison study of atmospheric circulations and potential vorticity anomaly between the two rapid-intensified typhoons 被引量:1
5
作者 Xi-Ba TANG Fan PING +2 位作者 Shuai YANG Meng-Xia LI Jing PENG 《Atmospheric and Oceanic Science Letters》 CSCD 2018年第6期481-490,共10页
For two rapid-intensification typhoons-Mujigae(2015)and Vicente(2012)-the atmospheric circulation conditions and potential vorticity(PV)anomaly are compared.Although similar in their rapid-intensification(RI)rate,thei... For two rapid-intensification typhoons-Mujigae(2015)and Vicente(2012)-the atmospheric circulation conditions and potential vorticity(PV)anomaly are compared.Although similar in their rapid-intensification(RI)rate,their atmospheric circulation conditions differ considerably,with the absence or presence of an upper-tropospheric inverted trough(IT)being their main difference.The IT provides useful clues for the onset of RI,by estimating the interaction between the environmental upper-tropospheric IT and the typhoon based on eddy momentum flux convergence calculation.The trough–typhoon interaction is examined by comparing the PV transport process for the two cases.An isolated positive PV column develops vertically near Mujigae’s onset of RI,which is not influenced by synoptic-scale PV advection.However,for Vicente,another source-advection from a high-latitude PV reservoir along the upper-tropospheric IT-joins the built-up high-PV anomaly in favor of RI. 展开更多
关键词 Rapidly intensification upper-tropospheric inverted trough potential vorticity
下载PDF
An analysis of anomalous weather and climate around the M_S=6.2 earthquake of Zhangbei region
6
作者 QING SEN LI 1) YU MEI JIN 1) ZHI CHENG MIAO 1) WEN ZHONG JIA 1) GUI CAI JIANG 2) 1) Zhangjiakou Meteorological Observatory of Hebei Province, Zhangjiakou 075000, China 2) Forth Middle School of Zhangjiakou 《Acta Seismologica Sinica(English Edition)》 CSCD 1998年第6期73-80,共8页
Through analysis we found that some mesoscale anomalous regions (10 1~10 2 km) of meteorological parameters such as the special drought areas, unusual warm areas, the largest snowfall center, low pressure area toge... Through analysis we found that some mesoscale anomalous regions (10 1~10 2 km) of meteorological parameters such as the special drought areas, unusual warm areas, the largest snowfall center, low pressure area together with the epicenter area of M S=6.2 Zhangbei earthquake on January 10, 1998 are located at the same area, i.e. there appears the ″Five areas corresponding″ phenomenon. Meanwhile, three times of low pressure evolution are generated and develop in the earthquake area in five days after the occurrence of the earthquake. The abnormal variation of the lower limit of frozen soil layer shows indirectly that unusual warm in earthquake areas are related to the upward thermal conduction from the deeper layer of earth surface. 展开更多
关键词 strong earthquake in Zhangbei area especial drought areas unusual warm areas largest snowfall inverted trough of low pressure
下载PDF
A Study on a Heavy Rainfall Event Triggered by an Inverted Typhoon Trough in Shandong Province 被引量:11
7
作者 赵宇 崔晓鹏 王建国 《Acta meteorologica Sinica》 SCIE 2009年第4期468-484,共17页
A heavy rainfall event that occurred in Shandong Province in 26 28 August 2004 was caused mainly by Typhoon Acre and cold air activities related to a westerly trough. The event was triggered by an inverted typhoon tro... A heavy rainfall event that occurred in Shandong Province in 26 28 August 2004 was caused mainly by Typhoon Acre and cold air activities related to a westerly trough. The event was triggered by an inverted typhoon trough, which was closely associated with the intensification of the low-level southeasterly flow and the northward transport of heat and momentum in the periphery of the typhoon low. A numerical simulation of this event is performed using the nonhydrostatic mesoscale model MM5 with two-way interactive and triply-nested grids, and the structure of the inverted typhoon trough is studied. Furthermore, the formation and development mechanism of the inverted typhoon trough and a mesoscale vortex are discussed through a vorticity budget analysis. The results show that the heavy rainfall was induced by the strong convergence between the strong and weak winds within the inverted typhoon trough. Dynamic effects of the low-level jet and the diabatic heating of precipitation played an important role in the development of the inverted typhoon trough and the formation of the mesoscale vortex. The vorticity budget analysis suggests that the divergence term in the low troposphere, the horizontal advection term, and the convection term in the middle troposphere were main contributors to positive vorticity. Nonetheless, at the same pressure level, the effect of the divergence term and that of the adveetion term were opposite to each other. In the middle troposphere, the vertical transport term made a positive contribution while the tilting term made a negative contribution, and the total vorticity tendency was the net result of their counteractions. It is found that the change tendency of the relative vorticity was not uniform horizontally. A strong positive vorticity tendency occurred in the southeast of the mesoscale vortex, which is why the heavy rainfall was concentrated there. The increase of positive vorticity in the low (upper) troposphere was caused by horizontal convergence (upward transport of vorticity from the lower troposphere). Therefore, the development of the inverted typhoon trough and the formation of the mesoscale vortex were mainly attributed to the vorticity generated in the low troposphere, and also the vertical transport of vorticity from the low and middle troposphere. 展开更多
关键词 heavy rainfall event landing typhoon inverted typhoon trough vorticity budget
原文传递
NUMERICAL SIMULATION OF EXTREMELY HEAVY RAIN AND MESO-β SCALE LOW VORTEX IN INVERTED TYPHOON TROUGH 被引量:4
8
作者 姜勇强 王昌雨 +1 位作者 张维桓 陈中一 《Acta meteorologica Sinica》 SCIE 2004年第2期195-210,共16页
Large-scale and mesoscale analyses are made for extremely heavy rain (EHR) and meso-β scale low vortex (MSLV) in Jiading District of Shanghai Municipality during 6-7 July 2001.It is shown that the EHR forms in the si... Large-scale and mesoscale analyses are made for extremely heavy rain (EHR) and meso-β scale low vortex (MSLV) in Jiading District of Shanghai Municipality during 6-7 July 2001.It is shown that the EHR forms in the situation of northern westerly trough linking together with southern inverted typhoon trough at northwest side of the West Pacific Ocean subtropical high. Numerical simulation is made using a 21-layer improved REM (regional η coordinate model) for this course.The results show that the precipitation forms earlier than MSLV.and the strong convergence in wind velocity mate (WVM) triggers the strong precipitation.The formative reasons of WVM.especially the weak wind velocity center are discussed,and the formative mechanisms of the MSLV and EHR are discussed using high spatial and temporal resolution model- output physical fields.The results show that the heavy rain releases latent heat and warms the air column,and enhances the low level positive vorticity that existed before.Then it causes the formation of MSLV.There is a positive feedback mechanism between low vortex and precipitation,so CISK must be an important mechanism. 展开更多
关键词 extremely heavy rain (EHR) meso-B scale low vortex (MSLV). wind velocity mate (WVM). inverted typhoon trough numerical simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部