This paper proposes a new concept of synthesized voltage vector to address dead-time effect issue for Finite Control Set Model Predictive Control(FCS-MPC)technique.For a voltage source inverter(VSI),dead-time is inevi...This paper proposes a new concept of synthesized voltage vector to address dead-time effect issue for Finite Control Set Model Predictive Control(FCS-MPC)technique.For a voltage source inverter(VSI),dead-time is inevitably inserted between the turn off and turn on instants of power devices to avoid short circuit phenomenon.The influence of dead-time leads to output voltage vector error of three-phase inverters.Furthermore,it will result in computing deviation in cost function,and will deteriorate the performance of the system if not properly dealt with.In this paper,the problem is clearly analyzed,and the solution to this issue is proposed by introducing a synthesized voltage vector.The proposed solution is verified by Hardware-in-the-loop(HiL)test in real time,and results validate the effectiveness of the proposed solution.展开更多
Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used t...Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.展开更多
This paper develops a flexible power regulation and limitation strategy of voltage source inverters(VSIs)under unbalanced grid faults.When the classical power theory is used under unbalanced grid faults,the power osci...This paper develops a flexible power regulation and limitation strategy of voltage source inverters(VSIs)under unbalanced grid faults.When the classical power theory is used under unbalanced grid faults,the power oscillations and current distortions are inevitable.In the proposed strategy,the extended power theory is introduced to compute the power feedbacks together with the classical power theory.Based on the combination of the classical and extended power theory,the proposed strategy can achieve the sinusoidal current provision and the flexible regulation between three common targets,i.e.,constant active power,balanced current,and constant reactive power.Meanwhile,the proposed strategy is associated with a power limiter,which is capable to keep the currents under the pre-defined threshold and to compute the maximum apparent power for better utilization of the inverter capacity.With this power limiter,the rated inverter capacity is fully used for both the active and reactive power provisions under unbalanced grid faults.Using the proposed power regulation and limitation,the VSI can avoid overcurrent tripping and flexibly regulate its power under unbalanced grid faults.All the conclusions are verified by the real-time hardware-in-loop tests.展开更多
The photovoltaic grid-connected inverter is an important interface between the photovoltaic power generation system and power grid.Its high-quality operation is directly related to the output power quality of the powe...The photovoltaic grid-connected inverter is an important interface between the photovoltaic power generation system and power grid.Its high-quality operation is directly related to the output power quality of the power grid.In order to further optimize the control effect of the quasi-Z source grid-connected photovoltaic inverter,a fuzzy proportional complex integral control(PCI)method is proposed for the current internal loop control.This method can eliminate the steady-state error,and has the characteristic of zero steady-state error adjustment for the AC disturbance signal of a specific frequency.The inductance-capacitance-inductance(LCL)filter is adopted in the grid-connected circuit,and the feedback capacitive current is taken as the control variable of the inner loop to form the active damping control method,which can not only effectively suppress the resonance of the LCL circuit,but also significantly inhibit the high-order harmonics in the grid-connected current.Finally,a system simulation model is built in MATLAB/Simulink to verify the superiority and effectiveness of the proposed method.展开更多
This paper presents a simple approach of a topology already known in the literature, applied in active power transfer from direct current source to any alternating current voltage source, whether the utility power or ...This paper presents a simple approach of a topology already known in the literature, applied in active power transfer from direct current source to any alternating current voltage source, whether the utility power or a voltage inverter that is forming an isolated AC grid. The photovoltaic inverter works as current controlled voltage source inverter that provides a sinusoidal current to the AC grid. The inverter is insulated from the grid by a transformer. The system is discussed and modeled. Simulation results of this application are presented and experimental results validate this topology.展开更多
The paper proposes a Current Source Multilevel Inverter (CSMLI) with single rating inductor topology. Multilevel inverters are most familiar with power converter’s applications due to reduced dv/dt, di/dt stress, and...The paper proposes a Current Source Multilevel Inverter (CSMLI) with single rating inductor topology. Multilevel inverters are most familiar with power converter’s applications due to reduced dv/dt, di/dt stress, and very efficient for reducing harmonic distortion in the output voltage and output current. The proposed nine-level current source inverter has been tested under symmetrical and asymmetrical modes of operation, and their activities are compared using PI and Fuzzy PI (Proportional Integral) controllers with multicarrier PWM (Pulse Width Modulation) strategy. MATLAB/Simulink simulation has been made for the proposed converter to obtain its performance measures. Some experimental results are given to verify the presented Current Source Multilevel Inverter.展开更多
In this manuscript it is proposed and demonstrated that how an ANFIS (Adaptive Neuro Fuzzy Inference System) can be used in the control of a Voltage Source Inverter (VSI) connected to the grid. Volatile changes in the...In this manuscript it is proposed and demonstrated that how an ANFIS (Adaptive Neuro Fuzzy Inference System) can be used in the control of a Voltage Source Inverter (VSI) connected to the grid. Volatile changes in the gird parameters rising by its variable demands and other related issues may humiliate the efficiency with which power can be injected into the grid. The system becomes a higher order one with the filters used at the terminal of the Voltage Source Inverter (VSI) along with the parameters of the grid which change from time to time. Single time tuned mathematical controllers like the PID variants are not suitable for such applications. Considering the increased order of the system and the associated non-linearity we have to look out for intelligent controllers. An ANFIS based control is found to be promising;the development and implementation of one such are demonstrated in this paper using the MATLAB SIMULINK platform and through experimental verification using the Reduced Instruction Set Computer (RISC) Microcontroller Advanced RISC Machine (ARM) processor as the central controller for the VSI.展开更多
This paper focuses on a combination of three-phase VSI (voltage source inverter) with a predictive current control to provide an optimized system for three-phase inverters that control the load current. A FS-MPC (f...This paper focuses on a combination of three-phase VSI (voltage source inverter) with a predictive current control to provide an optimized system for three-phase inverters that control the load current. A FS-MPC (finite set-model predictive control) strategy for a three-phase VSI for RES (renewable energy systems) applications is implemented. The renewable energy systems model is used in this paper to investigate the system performance when power is supplied to resistive-inductive load. With three different cases, the evaluation of the system is done. Firstly, the robustness of control strategy under variable DC-Link is done in terms of the THD (total harmonic distortion). Secondly, with one prediction step, the system performance is tested using different sampling time, and lastly, the dynamic response of the system with step change in the amplitude of the reference is investigated. The simulations and result analyses are carried out using Matlab/Simulink to test the effectiveness and robustness of FS-MPC for two-level VSI with AC filter for resistive-inductive load supplied by a renewable energy system.展开更多
This paper focuses on a Z source cascaded multilevel inverter which is designed to minimize harmonics in the output voltage. A balanced dc-link peak voltage can be achieved. The power generation module is built by PV ...This paper focuses on a Z source cascaded multilevel inverter which is designed to minimize harmonics in the output voltage. A balanced dc-link peak voltage can be achieved. The power generation module is built by PV panels which are connected to Z-Source Cascade H-bridge inverter. Cascaded multilevel inverter can achieve the distributed maximum power point tracking to increase the system efficiency and achieve high voltage/high power grid tie without a transformer. This paper analyzes the different PWM switching scheme and the operating states of a ZSI module and comparison is made with different PWM and total harmonic distortion of various PWM schemes.展开更多
3.SWITCHING ANGLES If the nominal capacitor voltage is chosen as Vdc/2, then one can compute the switching anglesθ1,θ2,andθ3.Following the development,the Fourier series expan- sion of the(staircase)output voltage ...3.SWITCHING ANGLES If the nominal capacitor voltage is chosen as Vdc/2, then one can compute the switching anglesθ1,θ2,andθ3.Following the development,the Fourier series expan- sion of the(staircase)output voltage waveform of the multilevel inverter as shown in Fig.2(a)展开更多
Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the...Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.展开更多
Full bridge Zero Voltage Switch PWM converter combines advantages of the PWM control technique and resonant technique. However, Full ZVS is achieved only under large load current because resonant tank of this circu...Full bridge Zero Voltage Switch PWM converter combines advantages of the PWM control technique and resonant technique. However, Full ZVS is achieved only under large load current because resonant tank of this circuit is made up of the parasitic capacitance of the power semiconductors and the leakage inductor of the transformer primary. In this paper two saturable inductors as magnetic switches are added to secondary, so output inductor is always reflected to primary and assists resonant transition. Full ZVS is achieved under lower load current. The above mentioned investigated results are validated by the computerized simulation and hardware circuit experiment.展开更多
The single-phase three-level voltage source inverter based on wavelet modulation(WM) is proposed.The WM technique is based on constructing a nondyadic-type multi-resolution analysis(MRA),which supports sampling contin...The single-phase three-level voltage source inverter based on wavelet modulation(WM) is proposed.The WM technique is based on constructing a nondyadic-type multi-resolution analysis(MRA),which supports sampling continuous-time sinusoidal signals in a nonuniform recurrent manner,and then reconstructing it by using inverter switching actions. In order to further improve the output voltage waveform and reduce harmonic distortion,the wavelet modulation is used to three-level inverter. The high magnitude of fundamental component and significantly reduced harmonic contents of the inverter output voltage can be achieved by using WM in the single-phase three-level voltage source inverter. Furthermore,the WM algorithm is implemented by using only one element government(EV) in DSP. The simulated and experimental results prove the accuracy and feasibility of the WM scheme for single-phase three-level voltage source inverter.展开更多
The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems lik...The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems like decrease in motor speed due to load,high consumption of current and high ripple occurrence of ripples have reduced its preferences.The ultimate objective of this study is to control change in motor speed due to load variations.An improved Trans Z Source Inverter(ΓZSI)with a clamping diode is employed to maintain constant input voltage,reduce ripples and voltage overshoot.To operate induction motor at rated speed,different controllers are used.The conventional Proportional-Inte-gral(PI)controller suffers from high settling time and maximum peak overshoot.To overcome these limitations,Fractional Order Proportional Integral Derivative(FOPID)controller optimized by Gray Wolf Optimization(GWO)technique is employed to provide better performance by eliminating maximum peak overshoot pro-blems.The proposed speed controller provides good dynamic response and controls the induction motor more effectively.The complete setup is implemented in MATLAB Simulation to verify the simulation results.The proposed approach provides optimal performance with high torque and speed along with less steady state error.展开更多
The main objective of this paper is to reduce the total harmonics in a single phase voltage source inverter using Artificial Bee Colony (ABC) optimization technique for critical load applications. Single phase inverte...The main objective of this paper is to reduce the total harmonics in a single phase voltage source inverter using Artificial Bee Colony (ABC) optimization technique for critical load applications. Single phase inverter is a non-linear load using power electronic components causing distortions in the load voltage and current wave patterns from the sinusoidal waveforms due to harmonics. The mapping state space model for a full bridge voltage source inverter was developed using output load resistance. An optimal ABC technique has been designed and optimized values are estimated using a full bridge voltage controlled inverter using Proportional Integral Algorithm. The MATLAB/SIMULINK tool and Experimental setup were implemented and their THD values were estimated. Also this ABC scheme is compared with the previous results such as PI Algorithm, Fuzzy logic controller and Neuro-fuzzy controllers. From the simulation and experimental results using ABC algorithm, it is observed that the total harmonics are mitigated considerably compared to previous results with respect to the power quality standards such as IEEE-519 and IEC 61000.展开更多
This project proposes a novel dual-input matrix converter (DIMC) which is used to integrate the output of the wind energy to a power grid. The proposed matrix converter is developed based on the traditional indirect m...This project proposes a novel dual-input matrix converter (DIMC) which is used to integrate the output of the wind energy to a power grid. The proposed matrix converter is developed based on the traditional indirect matrix converter under reverse power flow operation mode, but with its six-switch voltage source converter replaced by a nine-switch configuration followed by the current source inverter (CSI). Matrix electric power conversion topologies and their switch functions are flexible and are used for specific applications. With the additional three switches, the proposed DIMC can provide six input terminals, which make it possible to integrate two independent AC sources from two independent wind turbines into a single grid tied power electronics interface. Commanded currents can be extracted from the two input sources to the grid. The proposed PI control and modulation schemes guaranteed sinusoidal input and output waveforms as well as reduced THD. The simulation results are provided to validate the effectiveness of the proposed control and modulation schemes for the proposed converter.展开更多
Renewable energy has become important for electricity generation because of the high air pollution associated with conventional fossil-based energy systems.Conventional fossil-based power plants are gradually transiti...Renewable energy has become important for electricity generation because of the high air pollution associated with conventional fossil-based energy systems.Conventional fossil-based power plants are gradually transitioning by incorporating renewable energy sources,such as photovoltaic(PV)cells.In a PV system,an inverter converts DC power from solar panels to AC power required to serve common electrical loads.A conventional H-bridge inverter topology has several disadvantages,such as the voltage being not sinusoidal,switching the DC voltage and high common-mode voltage.The common-mode voltage can cause a large leaked capacitive current,which can result in undesirable operation in solar power applications.A common solution to this problem is the addition of a large filter to the input or output of an inverter.An inherent sinusoidal voltage source inverter based on a modified Cuk converter as its basic cell,which simultaneously generates a sinusoidal output voltage and a lower common-mode voltage,is proposed.The proposed topology does not require additional input or output filters.Analytical expressions are derived to confirm the operation of the proposed topology.Simulation results confirm the mathematical analysis.A laboratory-scale experiment is performed to verify the proposed inverter.展开更多
The application of LCL filters has become popular for inverters connected to the power grid due to their advantages in harmonic current reductions. However,the power grid in a distribution system is non-ideal, present...The application of LCL filters has become popular for inverters connected to the power grid due to their advantages in harmonic current reductions. However,the power grid in a distribution system is non-ideal, presenting itself as a voltage source with significant impedance. This means that an inverter using an LCL filter may interact with other grid-connected inverters via the nonideal grid. In this paper, damping optimization of LCLfilters to reduce this interaction is studied for a three-phase voltage source inverter(VSI). Simulation results show that resonant oscillation occurs in a distributed power grid, even if the VSI with an LCL filter is well designed for standalone applications. A small-signal analysis is performed to predict this stability problem and to locate the boundary of the instability using an impedance approach. Based on these analytical results, optimized damping of the LCLfilter can be designed. The oscillation phenomena and optimized damping design are verified by simulations and experimental measurements.展开更多
Current source inverter(CSI)is a class of power electronic converters that,thanks to the inherent boost capability and ease of control,is investigated for grid-tied photovoltaic power conversion applications.Tradition...Current source inverter(CSI)is a class of power electronic converters that,thanks to the inherent boost capability and ease of control,is investigated for grid-tied photovoltaic power conversion applications.Traditional CSI and CSI7 topologies are here analyzed and compared with two kind of space vector modulation strategies mainly in terms of ground leakage current both in simulations and experiments.Furthermore,THD of the injected grid current and the computation of conduction and switching semiconductor power losses are also carried out in numerical simulations.The topology comparison is carried out with the use of a different number of PV modules,to analyze the robustness of the topologies to different size of the PV strings.Simulation and experimental results show that the CSI7 topology,with respect to conventional CSI,allows to strongly reduce ground leakage current,phase current THD and semicondutor power losses,at the price of an additional power device.展开更多
In power converter control,predictive control has several merits,such as simple concept and fast response.However,the necessity to use the weighting factor inside the cost function makes the control design complex in ...In power converter control,predictive control has several merits,such as simple concept and fast response.However,the necessity to use the weighting factor inside the cost function makes the control design complex in the case of regulating multivariables where the value of the weighting factor is obtained by a nontrivial process.Also,it primarily depends on the system parameters and operating points of the control system.This paper aims to enhance the model predictive algorithm of the singlestage topology of a quasi-Z Source Inverter(qZSI).The concept of a multi-objective optimization approach is used in addition to the sub-cost function definition to remove the weighting factors.By using the sub-cost function definition,the inductor current is pushed away from the main loop of the predictive algorithm.Thus,no weighting factor is needed to manage the priority of the inductor current.The other two control targets,which are the capacitor voltage and load currents,will be controlled by the multi-objective optimization approach without using any weighting factors.A detailed theoretical analysis of the proposed technique will be given and validated based on simulation results.展开更多
文摘This paper proposes a new concept of synthesized voltage vector to address dead-time effect issue for Finite Control Set Model Predictive Control(FCS-MPC)technique.For a voltage source inverter(VSI),dead-time is inevitably inserted between the turn off and turn on instants of power devices to avoid short circuit phenomenon.The influence of dead-time leads to output voltage vector error of three-phase inverters.Furthermore,it will result in computing deviation in cost function,and will deteriorate the performance of the system if not properly dealt with.In this paper,the problem is clearly analyzed,and the solution to this issue is proposed by introducing a synthesized voltage vector.The proposed solution is verified by Hardware-in-the-loop(HiL)test in real time,and results validate the effectiveness of the proposed solution.
文摘Nonlinear loads in the power distribution system cause non-sinusoidal currents and voltages with harmonic components.Shunt active filters(SAF) with current controlled voltage source inverters(CCVSI) are usually used to obtain balanced and sinusoidal source currents by injecting compensation currents.However,CCVSI with traditional controllers have a limited transient and steady state performance.In this paper,we propose an adaptive dynamic programming(ADP) controller with online learning capability to improve transient response and harmonics.The proposed controller works alongside existing proportional integral(PI) controllers to efficiently track the reference currents in the d-q domain.It can generate adaptive control actions to compensate the PI controller.The proposed system was simulated under different nonlinear(three-phase full wave rectifier) load conditions.The performance of the proposed approach was compared with the traditional approach.We have also included the simulation results without connecting the traditional PI control based power inverter for reference comparison.The online learning based ADP controller not only reduced average total harmonic distortion by 18.41%,but also outperformed traditional PI controllers during transients.
基金This work is supported by the National Key Research and Development Program of China under Project 2021YFB2601600。
文摘This paper develops a flexible power regulation and limitation strategy of voltage source inverters(VSIs)under unbalanced grid faults.When the classical power theory is used under unbalanced grid faults,the power oscillations and current distortions are inevitable.In the proposed strategy,the extended power theory is introduced to compute the power feedbacks together with the classical power theory.Based on the combination of the classical and extended power theory,the proposed strategy can achieve the sinusoidal current provision and the flexible regulation between three common targets,i.e.,constant active power,balanced current,and constant reactive power.Meanwhile,the proposed strategy is associated with a power limiter,which is capable to keep the currents under the pre-defined threshold and to compute the maximum apparent power for better utilization of the inverter capacity.With this power limiter,the rated inverter capacity is fully used for both the active and reactive power provisions under unbalanced grid faults.Using the proposed power regulation and limitation,the VSI can avoid overcurrent tripping and flexibly regulate its power under unbalanced grid faults.All the conclusions are verified by the real-time hardware-in-loop tests.
基金the Foundation of a Hundred Youth Talents Training Program of Lanzhou Jiaotong University under Grant No.2018-103the Colleges and University Scientific Research Funds of Gansu Province under Grant No.2017A-026。
文摘The photovoltaic grid-connected inverter is an important interface between the photovoltaic power generation system and power grid.Its high-quality operation is directly related to the output power quality of the power grid.In order to further optimize the control effect of the quasi-Z source grid-connected photovoltaic inverter,a fuzzy proportional complex integral control(PCI)method is proposed for the current internal loop control.This method can eliminate the steady-state error,and has the characteristic of zero steady-state error adjustment for the AC disturbance signal of a specific frequency.The inductance-capacitance-inductance(LCL)filter is adopted in the grid-connected circuit,and the feedback capacitive current is taken as the control variable of the inner loop to form the active damping control method,which can not only effectively suppress the resonance of the LCL circuit,but also significantly inhibit the high-order harmonics in the grid-connected current.Finally,a system simulation model is built in MATLAB/Simulink to verify the superiority and effectiveness of the proposed method.
文摘This paper presents a simple approach of a topology already known in the literature, applied in active power transfer from direct current source to any alternating current voltage source, whether the utility power or a voltage inverter that is forming an isolated AC grid. The photovoltaic inverter works as current controlled voltage source inverter that provides a sinusoidal current to the AC grid. The inverter is insulated from the grid by a transformer. The system is discussed and modeled. Simulation results of this application are presented and experimental results validate this topology.
文摘The paper proposes a Current Source Multilevel Inverter (CSMLI) with single rating inductor topology. Multilevel inverters are most familiar with power converter’s applications due to reduced dv/dt, di/dt stress, and very efficient for reducing harmonic distortion in the output voltage and output current. The proposed nine-level current source inverter has been tested under symmetrical and asymmetrical modes of operation, and their activities are compared using PI and Fuzzy PI (Proportional Integral) controllers with multicarrier PWM (Pulse Width Modulation) strategy. MATLAB/Simulink simulation has been made for the proposed converter to obtain its performance measures. Some experimental results are given to verify the presented Current Source Multilevel Inverter.
文摘In this manuscript it is proposed and demonstrated that how an ANFIS (Adaptive Neuro Fuzzy Inference System) can be used in the control of a Voltage Source Inverter (VSI) connected to the grid. Volatile changes in the gird parameters rising by its variable demands and other related issues may humiliate the efficiency with which power can be injected into the grid. The system becomes a higher order one with the filters used at the terminal of the Voltage Source Inverter (VSI) along with the parameters of the grid which change from time to time. Single time tuned mathematical controllers like the PID variants are not suitable for such applications. Considering the increased order of the system and the associated non-linearity we have to look out for intelligent controllers. An ANFIS based control is found to be promising;the development and implementation of one such are demonstrated in this paper using the MATLAB SIMULINK platform and through experimental verification using the Reduced Instruction Set Computer (RISC) Microcontroller Advanced RISC Machine (ARM) processor as the central controller for the VSI.
文摘This paper focuses on a combination of three-phase VSI (voltage source inverter) with a predictive current control to provide an optimized system for three-phase inverters that control the load current. A FS-MPC (finite set-model predictive control) strategy for a three-phase VSI for RES (renewable energy systems) applications is implemented. The renewable energy systems model is used in this paper to investigate the system performance when power is supplied to resistive-inductive load. With three different cases, the evaluation of the system is done. Firstly, the robustness of control strategy under variable DC-Link is done in terms of the THD (total harmonic distortion). Secondly, with one prediction step, the system performance is tested using different sampling time, and lastly, the dynamic response of the system with step change in the amplitude of the reference is investigated. The simulations and result analyses are carried out using Matlab/Simulink to test the effectiveness and robustness of FS-MPC for two-level VSI with AC filter for resistive-inductive load supplied by a renewable energy system.
文摘This paper focuses on a Z source cascaded multilevel inverter which is designed to minimize harmonics in the output voltage. A balanced dc-link peak voltage can be achieved. The power generation module is built by PV panels which are connected to Z-Source Cascade H-bridge inverter. Cascaded multilevel inverter can achieve the distributed maximum power point tracking to increase the system efficiency and achieve high voltage/high power grid tie without a transformer. This paper analyzes the different PWM switching scheme and the operating states of a ZSI module and comparison is made with different PWM and total harmonic distortion of various PWM schemes.
文摘3.SWITCHING ANGLES If the nominal capacitor voltage is chosen as Vdc/2, then one can compute the switching anglesθ1,θ2,andθ3.Following the development,the Fourier series expan- sion of the(staircase)output voltage waveform of the multilevel inverter as shown in Fig.2(a)
基金National Natural Sciences Foundation(60474043)Henan Province Science Fund for Distinguished Young Scholars(0412002200)Henan Province Major Projects(0223025300)
文摘Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.
文摘Full bridge Zero Voltage Switch PWM converter combines advantages of the PWM control technique and resonant technique. However, Full ZVS is achieved only under large load current because resonant tank of this circuit is made up of the parasitic capacitance of the power semiconductors and the leakage inductor of the transformer primary. In this paper two saturable inductors as magnetic switches are added to secondary, so output inductor is always reflected to primary and assists resonant transition. Full ZVS is achieved under lower load current. The above mentioned investigated results are validated by the computerized simulation and hardware circuit experiment.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51107016)
文摘The single-phase three-level voltage source inverter based on wavelet modulation(WM) is proposed.The WM technique is based on constructing a nondyadic-type multi-resolution analysis(MRA),which supports sampling continuous-time sinusoidal signals in a nonuniform recurrent manner,and then reconstructing it by using inverter switching actions. In order to further improve the output voltage waveform and reduce harmonic distortion,the wavelet modulation is used to three-level inverter. The high magnitude of fundamental component and significantly reduced harmonic contents of the inverter output voltage can be achieved by using WM in the single-phase three-level voltage source inverter. Furthermore,the WM algorithm is implemented by using only one element government(EV) in DSP. The simulated and experimental results prove the accuracy and feasibility of the WM scheme for single-phase three-level voltage source inverter.
文摘The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems like decrease in motor speed due to load,high consumption of current and high ripple occurrence of ripples have reduced its preferences.The ultimate objective of this study is to control change in motor speed due to load variations.An improved Trans Z Source Inverter(ΓZSI)with a clamping diode is employed to maintain constant input voltage,reduce ripples and voltage overshoot.To operate induction motor at rated speed,different controllers are used.The conventional Proportional-Inte-gral(PI)controller suffers from high settling time and maximum peak overshoot.To overcome these limitations,Fractional Order Proportional Integral Derivative(FOPID)controller optimized by Gray Wolf Optimization(GWO)technique is employed to provide better performance by eliminating maximum peak overshoot pro-blems.The proposed speed controller provides good dynamic response and controls the induction motor more effectively.The complete setup is implemented in MATLAB Simulation to verify the simulation results.The proposed approach provides optimal performance with high torque and speed along with less steady state error.
文摘The main objective of this paper is to reduce the total harmonics in a single phase voltage source inverter using Artificial Bee Colony (ABC) optimization technique for critical load applications. Single phase inverter is a non-linear load using power electronic components causing distortions in the load voltage and current wave patterns from the sinusoidal waveforms due to harmonics. The mapping state space model for a full bridge voltage source inverter was developed using output load resistance. An optimal ABC technique has been designed and optimized values are estimated using a full bridge voltage controlled inverter using Proportional Integral Algorithm. The MATLAB/SIMULINK tool and Experimental setup were implemented and their THD values were estimated. Also this ABC scheme is compared with the previous results such as PI Algorithm, Fuzzy logic controller and Neuro-fuzzy controllers. From the simulation and experimental results using ABC algorithm, it is observed that the total harmonics are mitigated considerably compared to previous results with respect to the power quality standards such as IEEE-519 and IEC 61000.
文摘This project proposes a novel dual-input matrix converter (DIMC) which is used to integrate the output of the wind energy to a power grid. The proposed matrix converter is developed based on the traditional indirect matrix converter under reverse power flow operation mode, but with its six-switch voltage source converter replaced by a nine-switch configuration followed by the current source inverter (CSI). Matrix electric power conversion topologies and their switch functions are flexible and are used for specific applications. With the additional three switches, the proposed DIMC can provide six input terminals, which make it possible to integrate two independent AC sources from two independent wind turbines into a single grid tied power electronics interface. Commanded currents can be extracted from the two input sources to the grid. The proposed PI control and modulation schemes guaranteed sinusoidal input and output waveforms as well as reduced THD. The simulation results are provided to validate the effectiveness of the proposed control and modulation schemes for the proposed converter.
基金Supported by Institut Teknologi Bandung(Grant No.223/IT1.B07.1/TA.00/2022)。
文摘Renewable energy has become important for electricity generation because of the high air pollution associated with conventional fossil-based energy systems.Conventional fossil-based power plants are gradually transitioning by incorporating renewable energy sources,such as photovoltaic(PV)cells.In a PV system,an inverter converts DC power from solar panels to AC power required to serve common electrical loads.A conventional H-bridge inverter topology has several disadvantages,such as the voltage being not sinusoidal,switching the DC voltage and high common-mode voltage.The common-mode voltage can cause a large leaked capacitive current,which can result in undesirable operation in solar power applications.A common solution to this problem is the addition of a large filter to the input or output of an inverter.An inherent sinusoidal voltage source inverter based on a modified Cuk converter as its basic cell,which simultaneously generates a sinusoidal output voltage and a lower common-mode voltage,is proposed.The proposed topology does not require additional input or output filters.Analytical expressions are derived to confirm the operation of the proposed topology.Simulation results confirm the mathematical analysis.A laboratory-scale experiment is performed to verify the proposed inverter.
基金supported by National Natural Science Foundation of China(No.51507118)by Open Fund of State Key Laboratory of Operation and Control of Renewable Energy and Storage Systems,China Electric Power Research Institute(Research on renewable energy power generation grid-connected converter fault tolerance evaluation method
文摘The application of LCL filters has become popular for inverters connected to the power grid due to their advantages in harmonic current reductions. However,the power grid in a distribution system is non-ideal, presenting itself as a voltage source with significant impedance. This means that an inverter using an LCL filter may interact with other grid-connected inverters via the nonideal grid. In this paper, damping optimization of LCLfilters to reduce this interaction is studied for a three-phase voltage source inverter(VSI). Simulation results show that resonant oscillation occurs in a distributed power grid, even if the VSI with an LCL filter is well designed for standalone applications. A small-signal analysis is performed to predict this stability problem and to locate the boundary of the instability using an impedance approach. Based on these analytical results, optimized damping of the LCLfilter can be designed. The oscillation phenomena and optimized damping design are verified by simulations and experimental measurements.
基金Supported by the Ningbo Science&Technology Beauro(2017D10031,2018A-08-C)(3315 Innovation Team).
文摘Current source inverter(CSI)is a class of power electronic converters that,thanks to the inherent boost capability and ease of control,is investigated for grid-tied photovoltaic power conversion applications.Traditional CSI and CSI7 topologies are here analyzed and compared with two kind of space vector modulation strategies mainly in terms of ground leakage current both in simulations and experiments.Furthermore,THD of the injected grid current and the computation of conduction and switching semiconductor power losses are also carried out in numerical simulations.The topology comparison is carried out with the use of a different number of PV modules,to analyze the robustness of the topologies to different size of the PV strings.Simulation and experimental results show that the CSI7 topology,with respect to conventional CSI,allows to strongly reduce ground leakage current,phase current THD and semicondutor power losses,at the price of an additional power device.
基金supported in part by the Estonian Research Council grant PUT1443in part by the Estonian Centre of Excellence in Zero Energy and Resource Efficient Smart Buildings and Districts,ZEBE,grant 2014-2020.4.01.15-0016 funded by the European Regional Development Fund.
文摘In power converter control,predictive control has several merits,such as simple concept and fast response.However,the necessity to use the weighting factor inside the cost function makes the control design complex in the case of regulating multivariables where the value of the weighting factor is obtained by a nontrivial process.Also,it primarily depends on the system parameters and operating points of the control system.This paper aims to enhance the model predictive algorithm of the singlestage topology of a quasi-Z Source Inverter(qZSI).The concept of a multi-objective optimization approach is used in addition to the sub-cost function definition to remove the weighting factors.By using the sub-cost function definition,the inductor current is pushed away from the main loop of the predictive algorithm.Thus,no weighting factor is needed to manage the priority of the inductor current.The other two control targets,which are the capacitor voltage and load currents,will be controlled by the multi-objective optimization approach without using any weighting factors.A detailed theoretical analysis of the proposed technique will be given and validated based on simulation results.