In the smart city paradigm, the deployment of Internet of Things(IoT) services and solutions requires extensive communication and computingresources to place and process IoT applications in real time, which consumesa ...In the smart city paradigm, the deployment of Internet of Things(IoT) services and solutions requires extensive communication and computingresources to place and process IoT applications in real time, which consumesa lot of energy and increases operational costs. Usually, IoT applications areplaced in the cloud to provide high-quality services and scalable resources.However, the existing cloud-based approach should consider the above constraintsto efficiently place and process IoT applications. In this paper, anefficient optimization approach for placing IoT applications in a multi-layerfog-cloud environment is proposed using a mathematical model (Mixed-Integer Linear Programming (MILP)). This approach takes into accountIoT application requirements, available resource capacities, and geographicallocations of servers, which would help optimize IoT application placementdecisions, considering multiple objectives such as data transmission, powerconsumption, and cost. Simulation experiments were conducted with variousIoT applications (e.g., augmented reality, infotainment, healthcare, andcompute-intensive) to simulate realistic scenarios. The results showed thatthe proposed approach outperformed the existing cloud-based approach interms of reducing data transmission by 64% and the associated processingand networking power consumption costs by up to 78%. Finally, a heuristicapproach was developed to validate and imitate the presented approach. Itshowed comparable outcomes to the proposed model, with the gap betweenthem reach to a maximum of 5.4% of the total power consumption.展开更多
Until a safe and effective vaccine to fight the SARS-CoV-2 virus is developed and available for the global population, preventive measures, such as wearable tracking and monitoring systems supported by Internet of Thi...Until a safe and effective vaccine to fight the SARS-CoV-2 virus is developed and available for the global population, preventive measures, such as wearable tracking and monitoring systems supported by Internet of Things(IoT) infrastructures, are valuable tools for containing the pandemic. In this review paper we analyze innovative wearable systems for limiting the virus spread, early detection of the first symptoms of the coronavirus disease COVID-19 infection, and remote monitoring of the health conditions of infected patients during the quarantine. The attention is focused on systems allowing quick user screening through ready-to-use hardware and software components. Such sensor-based systems monitor the principal vital signs, detect symptoms related to COVID-19 early, and alert patients and medical staff. Novel wearable devices for complying with social distancing rules and limiting interpersonal contagion(such as smart masks) are investigated and analyzed. In addition, an overview of implantable devices for monitoring the effects of COVID-19 on the cardiovascular system is presented. Then we report an overview of tracing strategies and technologies for containing the COVID-19 pandemic based on IoT technologies, wearable devices, and cloud computing. In detail, we demonstrate the potential of radio frequency based signal technology, including Bluetooth Low Energy(BLE), Wi-Fi, and radio frequency identification(RFID), often combined with Apps and cloud technology. Finally, critical analysis and comparisons of the different discussed solutions are presented, highlighting their potential and providing new insights for developing innovative tools for facing future pandemics.展开更多
There are numerous internet-connected devices attached to the industrial process through recent communication technologies,which enable machine-to-machine communication and the sharing of sensitive data through a new ...There are numerous internet-connected devices attached to the industrial process through recent communication technologies,which enable machine-to-machine communication and the sharing of sensitive data through a new technology called the industrial internet of things(IIoTs).Most of the suggested security mechanisms are vulnerable to several cybersecurity threats due to their reliance on cloud-based services,external trusted authorities,and centralized architectures;they have high computation and communication costs,low performance,and are exposed to a single authority of failure and bottleneck.Blockchain technology(BC)is widely adopted in the industrial sector for its valuable features in terms of decentralization,security,and scalability.In our work,we propose a decentralized,scalable,lightweight,trusted and secure private network based on blockchain technology/smart contracts for the overhead circuit breaker of the electrical power grid of the Al-Kufa/Iraq power plant as an industrial application.The proposed scheme offers a double layer of data encryption,device authentication,scalability,high performance,low power consumption,and improves the industry’s operations;provides efficient access control to the sensitive data generated by circuit breaker sensors and helps reduce power wastage.We also address data aggregation operations,which are considered challenging in electric power smart grids.We utilize a multi-chain proof of rapid authentication(McPoRA)as a consensus mechanism,which helps to enhance the computational performance and effectively improve the latency.The advanced reduced instruction set computer(RISC)machinesARMCortex-M33 microcontroller adopted in our work,is characterized by ultra-low power consumption and high performance,as well as efficiency in terms of real-time cryptographic algorithms such as the elliptic curve digital signature algorithm(ECDSA).This improves the computational execution,increases the implementation speed of the asymmetric cryptographic algorithm and provides data integrity and device authenticity at the perceptual layer.Our experimental results show that the proposed scheme achieves excellent performance,data security,real-time data processing,low power consumption(70.880 mW),and very low memory utilization(2.03%read-only memory(RAM)and 0.9%flash memory)and execution time(0.7424 s)for the cryptographic algorithm.This enables autonomous network reconfiguration on-demand and real-time data processing.展开更多
The Internet of Things (IoT) is a large-scale network of devices capable of sensing, data processing, and communicating with each other through different communication protocols. In today's technology ecosystem, I...The Internet of Things (IoT) is a large-scale network of devices capable of sensing, data processing, and communicating with each other through different communication protocols. In today's technology ecosystem, IoT interacts with many application areas such as smart city, smart building, security, traffic, remote monitoring, health, energy, disaster, agriculture, industry. The IoT network in these scenarios comprises tiny devices, gateways, and cloud platforms. An IoT network is able to keep these fundamental components in transmission under many conditions with lightweight communication protocols taking into account the limited hardware features (memory, processor, energy, etc.) of tiny devices. These lightweight communication protocols affect the network traffic, reliability, bandwidth, and energy consumption of the IoT application. Therefore, determining the most proper communication protocol for application developers emerges as an important engineering problem. This paper presents a straightforward overview of the lightweight communication protocols, technological advancements in application layer for the IoT ecosystem. The survey then analyzes various recent lightweight communication protocols and reviews their strengths and limitations. In addition, the paper explains the experimental comparison of Constrained Applications Protocol (CoAP), Message Queuing Telemetry (MQTT), and WebSocket protocols, more convenient for tiny IoT devices. Finally, we discuss future research directions of communication protocols for IoT.展开更多
In this research work,we proposed a medical image analysis framework with two separate releases whether or not Synovial Sarcoma(SS)is the cell structure for cancer.Within this framework the histopathology images are d...In this research work,we proposed a medical image analysis framework with two separate releases whether or not Synovial Sarcoma(SS)is the cell structure for cancer.Within this framework the histopathology images are decomposed into a third-level sub-band using a two-dimensional Discrete Wavelet Transform.Subsequently,the structure features(SFs)such as PrincipalComponentsAnalysis(PCA),Independent ComponentsAnalysis(ICA)and Linear Discriminant Analysis(LDA)were extracted from this subband image representation with the distribution of wavelet coefficients.These SFs are used as inputs of the Support Vector Machine(SVM)classifier.Also,classification of PCA+SVM,ICA+SVM,and LDA+SVM with Radial Basis Function(RBF)kernel the efficiency of the process is differentiated and compared with the best classification results.Furthermore,data collected on the internet from various histopathological centres via the Internet of Things(IoT)are stored and shared on blockchain technology across a wide range of image distribution across secure data IoT devices.Due to this,the minimum and maximum values of the kernel parameter are adjusted and updated periodically for the purpose of industrial application in device calibration.Consequently,these resolutions are presented with an excellent example of a technique for training and testing the cancer cell structure prognosis methods in spindle shaped cell(SSC)histopathological imaging databases.The performance characteristics of cross-validation are evaluated with the help of the receiver operating characteristics(ROC)curve,and significant differences in classification performance between the techniques are analyzed.The combination of LDA+SVM technique has been proven to be essential for intelligent SS cancer detection in the future,and it offers excellent classification accuracy,sensitivity,specificity.展开更多
The internet of things (loT) attracts great interest in many application domains concerned with monitoring and :ontrol of physical phenomena. However, application devel- opment is still one of the main hurdles to a...The internet of things (loT) attracts great interest in many application domains concerned with monitoring and :ontrol of physical phenomena. However, application devel- opment is still one of the main hurdles to a wide adoption of IoT technology. Application development is done at a low level, very close to the operating system and requires pro- grammers to focus on low-level system issues. The under- lying APIs can be very complicated and the amount of data collected can be huge. This can be very hard to deal with as a developer. In this paper, we present a runtime model based approach to IoT application development. First, the manage- ability of sensor devices is abstracted as runtime models that are automatically connected with the corresponding systems. Second, a customized model is constructed according to a personalized application scenario and the synchronization be- tween the customized model and sensor device runtime mod- els is ensured through model transformation. Thus, all the application logic can be carried out by executing programs on the customized model. An experiment on a real-world ap- plication scenario demonstrates the feasibility, effectiveness, and benefits of the new approach to IoT application develop- ment.展开更多
In this paper, we present a novel cloud-based demand side management (DSM) optimization approach for the cost reduction of energy usage in heating, ventilation and air conditioning (HVAC) systems in residential homes ...In this paper, we present a novel cloud-based demand side management (DSM) optimization approach for the cost reduction of energy usage in heating, ventilation and air conditioning (HVAC) systems in residential homes at the district level. The proposed approach achieves optimization through scheduling of HVAC energy usage within permissible bounds set by house users. House smart home energy management (SHEM) devices are connected to the utility/aggregator via a dedicated communication network that is used to enable DSM. Each house SHEM can predict its own HVAC energy usage for the next 24 h using minimalistic deep learning (DL) prediction models. These predictions are communicated to the aggregator, which will then do day ahead optimizations using the proposed game theory (GT) algorithm. The GT model captures the interaction between aggregator and customers and identifies a solution to the GT problem that translates into HVAC energy peak shifting and peak reduction achieved by rescheduling HVAC energy usage. The found solution is communicated by the aggregator to houses SHEM devices in the form of offers via DSM signals. If customers’ SHEM devices accept the offer, then energy cost reduction will be achieved. To validate the proposed algorithm, we conduct extensive simulations with a custom simulation tool based on GridLab-D tool, which is integrated with DL prediction models and optimization libraries. Results show that HVAC energy cost can be reduced by up to 36% while indirectly also reducing the peak-to-average (PAR) and the aggregated net load by up to 9.97%.展开更多
文摘In the smart city paradigm, the deployment of Internet of Things(IoT) services and solutions requires extensive communication and computingresources to place and process IoT applications in real time, which consumesa lot of energy and increases operational costs. Usually, IoT applications areplaced in the cloud to provide high-quality services and scalable resources.However, the existing cloud-based approach should consider the above constraintsto efficiently place and process IoT applications. In this paper, anefficient optimization approach for placing IoT applications in a multi-layerfog-cloud environment is proposed using a mathematical model (Mixed-Integer Linear Programming (MILP)). This approach takes into accountIoT application requirements, available resource capacities, and geographicallocations of servers, which would help optimize IoT application placementdecisions, considering multiple objectives such as data transmission, powerconsumption, and cost. Simulation experiments were conducted with variousIoT applications (e.g., augmented reality, infotainment, healthcare, andcompute-intensive) to simulate realistic scenarios. The results showed thatthe proposed approach outperformed the existing cloud-based approach interms of reducing data transmission by 64% and the associated processingand networking power consumption costs by up to 78%. Finally, a heuristicapproach was developed to validate and imitate the presented approach. Itshowed comparable outcomes to the proposed model, with the gap betweenthem reach to a maximum of 5.4% of the total power consumption.
文摘Until a safe and effective vaccine to fight the SARS-CoV-2 virus is developed and available for the global population, preventive measures, such as wearable tracking and monitoring systems supported by Internet of Things(IoT) infrastructures, are valuable tools for containing the pandemic. In this review paper we analyze innovative wearable systems for limiting the virus spread, early detection of the first symptoms of the coronavirus disease COVID-19 infection, and remote monitoring of the health conditions of infected patients during the quarantine. The attention is focused on systems allowing quick user screening through ready-to-use hardware and software components. Such sensor-based systems monitor the principal vital signs, detect symptoms related to COVID-19 early, and alert patients and medical staff. Novel wearable devices for complying with social distancing rules and limiting interpersonal contagion(such as smart masks) are investigated and analyzed. In addition, an overview of implantable devices for monitoring the effects of COVID-19 on the cardiovascular system is presented. Then we report an overview of tracing strategies and technologies for containing the COVID-19 pandemic based on IoT technologies, wearable devices, and cloud computing. In detail, we demonstrate the potential of radio frequency based signal technology, including Bluetooth Low Energy(BLE), Wi-Fi, and radio frequency identification(RFID), often combined with Apps and cloud technology. Finally, critical analysis and comparisons of the different discussed solutions are presented, highlighting their potential and providing new insights for developing innovative tools for facing future pandemics.
基金This work is supported by the National Key R&D Program of China under Grand No.2021YFB2012202the Key Research Development Plan of Hubei Province of China under Grant No.2021BAA171,2021BAA038the project of Science Technology and Innovation Commission of Shenzhen Municipality of China under Grant No.JCYJ20210324120002006 and JSGG20210802153009028.
文摘There are numerous internet-connected devices attached to the industrial process through recent communication technologies,which enable machine-to-machine communication and the sharing of sensitive data through a new technology called the industrial internet of things(IIoTs).Most of the suggested security mechanisms are vulnerable to several cybersecurity threats due to their reliance on cloud-based services,external trusted authorities,and centralized architectures;they have high computation and communication costs,low performance,and are exposed to a single authority of failure and bottleneck.Blockchain technology(BC)is widely adopted in the industrial sector for its valuable features in terms of decentralization,security,and scalability.In our work,we propose a decentralized,scalable,lightweight,trusted and secure private network based on blockchain technology/smart contracts for the overhead circuit breaker of the electrical power grid of the Al-Kufa/Iraq power plant as an industrial application.The proposed scheme offers a double layer of data encryption,device authentication,scalability,high performance,low power consumption,and improves the industry’s operations;provides efficient access control to the sensitive data generated by circuit breaker sensors and helps reduce power wastage.We also address data aggregation operations,which are considered challenging in electric power smart grids.We utilize a multi-chain proof of rapid authentication(McPoRA)as a consensus mechanism,which helps to enhance the computational performance and effectively improve the latency.The advanced reduced instruction set computer(RISC)machinesARMCortex-M33 microcontroller adopted in our work,is characterized by ultra-low power consumption and high performance,as well as efficiency in terms of real-time cryptographic algorithms such as the elliptic curve digital signature algorithm(ECDSA).This improves the computational execution,increases the implementation speed of the asymmetric cryptographic algorithm and provides data integrity and device authenticity at the perceptual layer.Our experimental results show that the proposed scheme achieves excellent performance,data security,real-time data processing,low power consumption(70.880 mW),and very low memory utilization(2.03%read-only memory(RAM)and 0.9%flash memory)and execution time(0.7424 s)for the cryptographic algorithm.This enables autonomous network reconfiguration on-demand and real-time data processing.
文摘The Internet of Things (IoT) is a large-scale network of devices capable of sensing, data processing, and communicating with each other through different communication protocols. In today's technology ecosystem, IoT interacts with many application areas such as smart city, smart building, security, traffic, remote monitoring, health, energy, disaster, agriculture, industry. The IoT network in these scenarios comprises tiny devices, gateways, and cloud platforms. An IoT network is able to keep these fundamental components in transmission under many conditions with lightweight communication protocols taking into account the limited hardware features (memory, processor, energy, etc.) of tiny devices. These lightweight communication protocols affect the network traffic, reliability, bandwidth, and energy consumption of the IoT application. Therefore, determining the most proper communication protocol for application developers emerges as an important engineering problem. This paper presents a straightforward overview of the lightweight communication protocols, technological advancements in application layer for the IoT ecosystem. The survey then analyzes various recent lightweight communication protocols and reviews their strengths and limitations. In addition, the paper explains the experimental comparison of Constrained Applications Protocol (CoAP), Message Queuing Telemetry (MQTT), and WebSocket protocols, more convenient for tiny IoT devices. Finally, we discuss future research directions of communication protocols for IoT.
基金This work was partly supported by the Technology development Program of MSS[No.S3033853]by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2020R1I1A3069700).
文摘In this research work,we proposed a medical image analysis framework with two separate releases whether or not Synovial Sarcoma(SS)is the cell structure for cancer.Within this framework the histopathology images are decomposed into a third-level sub-band using a two-dimensional Discrete Wavelet Transform.Subsequently,the structure features(SFs)such as PrincipalComponentsAnalysis(PCA),Independent ComponentsAnalysis(ICA)and Linear Discriminant Analysis(LDA)were extracted from this subband image representation with the distribution of wavelet coefficients.These SFs are used as inputs of the Support Vector Machine(SVM)classifier.Also,classification of PCA+SVM,ICA+SVM,and LDA+SVM with Radial Basis Function(RBF)kernel the efficiency of the process is differentiated and compared with the best classification results.Furthermore,data collected on the internet from various histopathological centres via the Internet of Things(IoT)are stored and shared on blockchain technology across a wide range of image distribution across secure data IoT devices.Due to this,the minimum and maximum values of the kernel parameter are adjusted and updated periodically for the purpose of industrial application in device calibration.Consequently,these resolutions are presented with an excellent example of a technique for training and testing the cancer cell structure prognosis methods in spindle shaped cell(SSC)histopathological imaging databases.The performance characteristics of cross-validation are evaluated with the help of the receiver operating characteristics(ROC)curve,and significant differences in classification performance between the techniques are analyzed.The combination of LDA+SVM technique has been proven to be essential for intelligent SS cancer detection in the future,and it offers excellent classification accuracy,sensitivity,specificity.
文摘The internet of things (loT) attracts great interest in many application domains concerned with monitoring and :ontrol of physical phenomena. However, application devel- opment is still one of the main hurdles to a wide adoption of IoT technology. Application development is done at a low level, very close to the operating system and requires pro- grammers to focus on low-level system issues. The under- lying APIs can be very complicated and the amount of data collected can be huge. This can be very hard to deal with as a developer. In this paper, we present a runtime model based approach to IoT application development. First, the manage- ability of sensor devices is abstracted as runtime models that are automatically connected with the corresponding systems. Second, a customized model is constructed according to a personalized application scenario and the synchronization be- tween the customized model and sensor device runtime mod- els is ensured through model transformation. Thus, all the application logic can be carried out by executing programs on the customized model. An experiment on a real-world ap- plication scenario demonstrates the feasibility, effectiveness, and benefits of the new approach to IoT application develop- ment.
基金supported by the National Science Foundation(NSF)grant ECCF 1936494.
文摘In this paper, we present a novel cloud-based demand side management (DSM) optimization approach for the cost reduction of energy usage in heating, ventilation and air conditioning (HVAC) systems in residential homes at the district level. The proposed approach achieves optimization through scheduling of HVAC energy usage within permissible bounds set by house users. House smart home energy management (SHEM) devices are connected to the utility/aggregator via a dedicated communication network that is used to enable DSM. Each house SHEM can predict its own HVAC energy usage for the next 24 h using minimalistic deep learning (DL) prediction models. These predictions are communicated to the aggregator, which will then do day ahead optimizations using the proposed game theory (GT) algorithm. The GT model captures the interaction between aggregator and customers and identifies a solution to the GT problem that translates into HVAC energy peak shifting and peak reduction achieved by rescheduling HVAC energy usage. The found solution is communicated by the aggregator to houses SHEM devices in the form of offers via DSM signals. If customers’ SHEM devices accept the offer, then energy cost reduction will be achieved. To validate the proposed algorithm, we conduct extensive simulations with a custom simulation tool based on GridLab-D tool, which is integrated with DL prediction models and optimization libraries. Results show that HVAC energy cost can be reduced by up to 36% while indirectly also reducing the peak-to-average (PAR) and the aggregated net load by up to 9.97%.