边界框回归分支是深度目标跟踪器的关键模块,其性能直接影响跟踪器的精度.评价精度的指标之一是交并比(Intersection over union,IoU).基于IoU的损失函数取代了l_(n)-norm损失成为目前主流的边界框回归损失函数,然而IoU损失函数存在2个...边界框回归分支是深度目标跟踪器的关键模块,其性能直接影响跟踪器的精度.评价精度的指标之一是交并比(Intersection over union,IoU).基于IoU的损失函数取代了l_(n)-norm损失成为目前主流的边界框回归损失函数,然而IoU损失函数存在2个固有缺陷:1)当预测框与真值框不相交时IoU为常量0,无法梯度下降更新边界框的参数;2)在IoU取得最优值时其梯度不存在,边界框很难收敛到IoU最优处.揭示了在回归过程中IoU最优的边界框各参数之间蕴含的定量关系,指出在边界框中心处于特定位置时存在多种尺寸不同的边界框使IoU损失最优的情况,这增加了边界框尺寸回归的不确定性.从优化两个统计分布之间散度的视角看待边界框回归问题,提出了光滑IoU(Smooth-IoU,SIoU)损失,即构造了在全局上光滑(即连续可微)且极值唯一的损失函数,该损失函数自然蕴含边界框各参数之间特定的最优关系,其唯一取极值的边界框可使IoU达到最优.光滑性确保了在全局上梯度存在使得边界框更容易回归到极值处,而极值唯一确保了在全局上可梯度下降更新参数,从而避开了IoU损失的固有缺陷.提出的光滑损失可以很容易取代IoU损失集成到现有的深度目标跟踪器上训练边界框回归,在LaSOT、GOT-10k、TrackingNet、OTB2015和VOT2018测试基准上所取得的结果,验证了光滑IoU损失的易用性和有效性.展开更多
针对目标检测定位准确性受边框回归损失函数影响的特性,设计基于IoU(Intersection over Union)的边框回归损失函数IAIoU(Included Aspect-ratio IoU)。该损失设计两项优化项,将预测框与标注框并集与交集面积的差与两框最小闭包面积之比...针对目标检测定位准确性受边框回归损失函数影响的特性,设计基于IoU(Intersection over Union)的边框回归损失函数IAIoU(Included Aspect-ratio IoU)。该损失设计两项优化项,将预测框与标注框并集与交集面积的差与两框最小闭包面积之比及与两框最小闭包面积平方之比的和作为第一项优化项,避免两框包含时损失函数退化;利用两框长宽比值之差作为第二项优化项,生成更接近标注框的预测框。设计的损失应用于单阶段检测算法YOLOv3,在红外飞机数据集上进行验证,mAP达到92.17%,比原始YOLOv3提升1.37%。展开更多
文摘边界框回归分支是深度目标跟踪器的关键模块,其性能直接影响跟踪器的精度.评价精度的指标之一是交并比(Intersection over union,IoU).基于IoU的损失函数取代了l_(n)-norm损失成为目前主流的边界框回归损失函数,然而IoU损失函数存在2个固有缺陷:1)当预测框与真值框不相交时IoU为常量0,无法梯度下降更新边界框的参数;2)在IoU取得最优值时其梯度不存在,边界框很难收敛到IoU最优处.揭示了在回归过程中IoU最优的边界框各参数之间蕴含的定量关系,指出在边界框中心处于特定位置时存在多种尺寸不同的边界框使IoU损失最优的情况,这增加了边界框尺寸回归的不确定性.从优化两个统计分布之间散度的视角看待边界框回归问题,提出了光滑IoU(Smooth-IoU,SIoU)损失,即构造了在全局上光滑(即连续可微)且极值唯一的损失函数,该损失函数自然蕴含边界框各参数之间特定的最优关系,其唯一取极值的边界框可使IoU达到最优.光滑性确保了在全局上梯度存在使得边界框更容易回归到极值处,而极值唯一确保了在全局上可梯度下降更新参数,从而避开了IoU损失的固有缺陷.提出的光滑损失可以很容易取代IoU损失集成到现有的深度目标跟踪器上训练边界框回归,在LaSOT、GOT-10k、TrackingNet、OTB2015和VOT2018测试基准上所取得的结果,验证了光滑IoU损失的易用性和有效性.
文摘针对目标检测定位准确性受边框回归损失函数影响的特性,设计基于IoU(Intersection over Union)的边框回归损失函数IAIoU(Included Aspect-ratio IoU)。该损失设计两项优化项,将预测框与标注框并集与交集面积的差与两框最小闭包面积之比及与两框最小闭包面积平方之比的和作为第一项优化项,避免两框包含时损失函数退化;利用两框长宽比值之差作为第二项优化项,生成更接近标注框的预测框。设计的损失应用于单阶段检测算法YOLOv3,在红外飞机数据集上进行验证,mAP达到92.17%,比原始YOLOv3提升1.37%。