The adsorption of iodine onto silica coated magnetite nanoparticles(im-SCMNPs) that modified with imidazole was investigated for removal of high concentrations of iodine from wastewater. Modified silica magnetite nano...The adsorption of iodine onto silica coated magnetite nanoparticles(im-SCMNPs) that modified with imidazole was investigated for removal of high concentrations of iodine from wastewater. Modified silica magnetite nanoparticles showed high efficiency in removing iodine from wastewater samples. The optimum pH for iodine removal was 7.0-8.0. The adsorption capacity was evaluated using both the Langmuir and Freundlich adsorption isotherm models. The size of the produced magnetite nanoparticles was determined by X-ray diffraction analysis and scanning electron microscopy. Synthesized magnetite nanoparticles showed the high adsorption capacity and would be a good method to increase adsorption efficiency for the removal of iodine in a wastewater treatment process. The Langmuir adsorption capacity(qmax) was found to be 140.84 mg/g of the adsorbent.展开更多
A simple water iodizing system, which incorporates the Venturi principle in combination with the controlled release mechanism of a silicone-sodium iodide elastomer, for the iodization of rural piped-water supply in th...A simple water iodizing system, which incorporates the Venturi principle in combination with the controlled release mechanism of a silicone-sodium iodide elastomer, for the iodization of rural piped-water supply in the control of endemic iodine deficiency has been developed and its effectiveness evaluated in three Iban longhouse villages in the iodinedeficient district of Lubok Antu, Sarawak. Urines were collected for iodine assays from women aged 15-40 years before and at 6 and 12 months after the connection of the iodinating device; goiter assessment was performed on the women at the start and end of the 1-year study. Water samples were collected for iodine assays at 2-weekly intervals. In all three villages, significant and sustained increases in median urinary iodine excretions,reaching levels recommended for an iodine-suffcient population, were observed; goitre prevalences were reduced in all the villages (by 22.6% to 35.8%). The iodine levels in the water ranged from 34 μg/l to 212 μg/L. In the control village, median urinary iodine excretions remained essentially unchanged but a small increase in goiter prevalence was observed. The iodized water was well received by the villagers and no adverse effects of water iodization were observed. The system functioned unattended throughout the one year period. The cost of providing supplemental iodine via the iodizing device is approximately 60 cents (U.S.) per family per year which is affordable by either the Government or the villagers. It is concluded that the iodizing system offers a new cost-effective strategy for the control of endemic iodine deficiency in Sarawak and may have applications in other areas with similar water sources展开更多
Objective: We aim to describe the environment iodine concentration in salt, water and soil along Zhejiang Province coast in the China foreland. It will be helpful for us to judge whether this area is insufficient in i...Objective: We aim to describe the environment iodine concentration in salt, water and soil along Zhejiang Province coast in the China foreland. It will be helpful for us to judge whether this area is insufficient in iodine and universal iodized salt is necessary or not. Methods: We collected iodized salt samples, drinking water samples (tap water in the towns, and well water or spring water in the villages), water samples from different sources (ditches, lakes, rivers) and soil samples through random sampling in June, 2005. Salt, water and soil iodine was detected by arsenic-cerium redox method. Statistical analysis was expressed as mean±SEMby Windows SPSS 13.0. Results: (1) The iodine concentration in salt was 27.9±4.33 mg/kg (n=108). (2) Seventy-five water samples were collected. The water iodine value was 0.6~84.8 μg/L (mean of 11.66 μg/L). The watershed along the Qiantang River has significantly higher iodine content than the water in Lin'an in mountain area (P<0.01). The iodine content and mean iodine content of tap water, well or spring water and natural water sources were 4.30±2.43 μg/L (n=34), 23.59±27.74 μg/L (n=19)and 12.72±10.72 μg/L (n=22) respectively. This indicated that among environmental water sources, the ditch iodine content was the highest with river water iodine being the lowest (P<0.01). (3) Soil iodine value was 0.11~2.93 mg/kg (mean of 1.32 mg/kg).Though there was no statistical difference of soil iodine in different districts (P=0.131), soil iodine content correlated positively with water iodine content. Conclusion: Iodine concentration in salt accords with national policy of adding iodine in salt. Foreland has more iodine in water than mountain area. The data reflected that water and soil iodine in foreland area was not high, which suggests universal iodized salt should be necessary. Environment iodine has relatively close association with pollution.展开更多
文摘The adsorption of iodine onto silica coated magnetite nanoparticles(im-SCMNPs) that modified with imidazole was investigated for removal of high concentrations of iodine from wastewater. Modified silica magnetite nanoparticles showed high efficiency in removing iodine from wastewater samples. The optimum pH for iodine removal was 7.0-8.0. The adsorption capacity was evaluated using both the Langmuir and Freundlich adsorption isotherm models. The size of the produced magnetite nanoparticles was determined by X-ray diffraction analysis and scanning electron microscopy. Synthesized magnetite nanoparticles showed the high adsorption capacity and would be a good method to increase adsorption efficiency for the removal of iodine in a wastewater treatment process. The Langmuir adsorption capacity(qmax) was found to be 140.84 mg/g of the adsorbent.
文摘A simple water iodizing system, which incorporates the Venturi principle in combination with the controlled release mechanism of a silicone-sodium iodide elastomer, for the iodization of rural piped-water supply in the control of endemic iodine deficiency has been developed and its effectiveness evaluated in three Iban longhouse villages in the iodinedeficient district of Lubok Antu, Sarawak. Urines were collected for iodine assays from women aged 15-40 years before and at 6 and 12 months after the connection of the iodinating device; goiter assessment was performed on the women at the start and end of the 1-year study. Water samples were collected for iodine assays at 2-weekly intervals. In all three villages, significant and sustained increases in median urinary iodine excretions,reaching levels recommended for an iodine-suffcient population, were observed; goitre prevalences were reduced in all the villages (by 22.6% to 35.8%). The iodine levels in the water ranged from 34 μg/l to 212 μg/L. In the control village, median urinary iodine excretions remained essentially unchanged but a small increase in goiter prevalence was observed. The iodized water was well received by the villagers and no adverse effects of water iodization were observed. The system functioned unattended throughout the one year period. The cost of providing supplemental iodine via the iodizing device is approximately 60 cents (U.S.) per family per year which is affordable by either the Government or the villagers. It is concluded that the iodizing system offers a new cost-effective strategy for the control of endemic iodine deficiency in Sarawak and may have applications in other areas with similar water sources
文摘Objective: We aim to describe the environment iodine concentration in salt, water and soil along Zhejiang Province coast in the China foreland. It will be helpful for us to judge whether this area is insufficient in iodine and universal iodized salt is necessary or not. Methods: We collected iodized salt samples, drinking water samples (tap water in the towns, and well water or spring water in the villages), water samples from different sources (ditches, lakes, rivers) and soil samples through random sampling in June, 2005. Salt, water and soil iodine was detected by arsenic-cerium redox method. Statistical analysis was expressed as mean±SEMby Windows SPSS 13.0. Results: (1) The iodine concentration in salt was 27.9±4.33 mg/kg (n=108). (2) Seventy-five water samples were collected. The water iodine value was 0.6~84.8 μg/L (mean of 11.66 μg/L). The watershed along the Qiantang River has significantly higher iodine content than the water in Lin'an in mountain area (P<0.01). The iodine content and mean iodine content of tap water, well or spring water and natural water sources were 4.30±2.43 μg/L (n=34), 23.59±27.74 μg/L (n=19)and 12.72±10.72 μg/L (n=22) respectively. This indicated that among environmental water sources, the ditch iodine content was the highest with river water iodine being the lowest (P<0.01). (3) Soil iodine value was 0.11~2.93 mg/kg (mean of 1.32 mg/kg).Though there was no statistical difference of soil iodine in different districts (P=0.131), soil iodine content correlated positively with water iodine content. Conclusion: Iodine concentration in salt accords with national policy of adding iodine in salt. Foreland has more iodine in water than mountain area. The data reflected that water and soil iodine in foreland area was not high, which suggests universal iodized salt should be necessary. Environment iodine has relatively close association with pollution.