Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborh...Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborhood match method using genetic algorithm is used to conceal the error blocks. Experimental results show that the searching space can be greatly reduced by using genetic algorithm compared with exhaustive searching method, and good image quality is achieved. The peak signal noise ratios(PSNRs) of the restored images are increased greatly.展开更多
BACKGROUND Determination of platybasia and basilar kyphosis are significant parts of routine cranial magnetic resonance(MR)interpretations.These situations may explain a patient’s symptoms or may be associated with o...BACKGROUND Determination of platybasia and basilar kyphosis are significant parts of routine cranial magnetic resonance(MR)interpretations.These situations may explain a patient’s symptoms or may be associated with other anomalies.AIM To indicate the interobserver and intraobserver reliability of the skull base angles(SBA)(Koenigsberg standard)and modified SBA(mSBA)measurement techniques.METHODS In total,391 patients who had undergone cranial MR imaging were re-assessed regarding the SBA measurements.The SBA and mSBA techniques were used on MR images.Two reviewers independently measured the same angles twice within a 15-day interval,using different monitors.Intraclass correlation coefficient(ICC)was calculated to reveal the intraobserver and interobserver agreements.RESULTS There was an excellent agreement between reviewers regarding both angle measurements(ICC was 0.998 for SBA and mSBA).Excellent agreement levels were also observed for intraobserver measurements.ICC was 0.998 for SBA and 0.999 for mSBA for reviewer 1.ICC was 0.997 for SBA and 0.999 for mSBA according to the measurement results of reviewer 2.Higher SBA and mSBA values were observed for females compared to males.There was no correlation between SBA and age for SBA.However,a negative and low-level correlation was observed between mSBA values and age for both reviewers.CONCLUSION SBA and mSBA measurements indicated excellent agreement regarding interobserver and intraobserver differences.The study results showed that SBA angles were reliable measurement techniques to be used on MR images.展开更多
The diagnostic potential of brain positron emission tomography (PET) imaging is limited by low spatial resolution. For solving this problem we propose a technique for the fusion of PET and MRI images. This fusion is...The diagnostic potential of brain positron emission tomography (PET) imaging is limited by low spatial resolution. For solving this problem we propose a technique for the fusion of PET and MRI images. This fusion is a trade-off between the spectral information extracted from PET images and the spatial information extracted from high spatial resolution MRI. The proposed method can control this trade-off. To achieve this goal, it is necessary to build a multiscale fusion model, based on the retinal cell photoreceptors model. This paper introduces general prospects of this model, and its application in multispectral medical image fusion. Results showed that the proposed method preserves more spectral features with less spatial distortion. Comparing with hue-intensity-saturation (HIS), discrete wavelet transform (DWT), wavelet-based sharpening and wavelet-a trous transform methods, the best spectral and spatial quality is only achieved simultaneously with the proposed feature-based data fusion method. This method does not require resampling images, which is an advantage over the other methods, and can perform in any aspect ratio between the pixels of MRI and PET images.展开更多
A new techinque for color based image retrieval is proposed. In this technique, the whole spectrum of a color image is divided into several sub ranges according to human visual characteristics. Then for each sub ra...A new techinque for color based image retrieval is proposed. In this technique, the whole spectrum of a color image is divided into several sub ranges according to human visual characteristics. Then for each sub range, the cumulative histogram is used for similarity matching. It is shown that the color contents of image can be well captured by the sub range cumulative histogram. The new technique has been tested and compared with conventional techniques with the help of a database of 400 images of real flowers, which are quite complicated in color contents. Some satisfactory retrieval results are presented.展开更多
Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based ...Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based on field image gray projection which enables the regional odd and even field image to be projected into x and y directions and thus to get the regional gray projection curves in x and y directions,respectively.For the odd field image channel,motion parameters can be estimated via iterative minimum absolute difference based on two successive field image regional gray projection curves.Then motion compensations can be obtained after using the Kalman filter method.Finally,the odd field image is adjusted according to the compensations.In the mean time,motion compensation is applied to the even field image channel with the odd field image gray projection curves of the current frame.By minimizing absolute difference between odd and even field image gray projection curves of the current frame,the inter-field motion parameters can be estimated.Therefore,the even field image can be adjusted by combining the inter-field motion parameters and the odd field compensations.Finally,the stabilized image sequence can be obtained by synthesizing the adjusted odd and even field images.Experimental results show that the proposed algorithm can run in real-time and have a good stabilization performance.In addition,image blurring can be improved.展开更多
In this paper, a feature selection method combining the reliefF and SVM-RFE algorithm is proposed. This algorithm integrates the weight vector from the reliefF into SVM-RFE method. In this method, the reliefF filters ...In this paper, a feature selection method combining the reliefF and SVM-RFE algorithm is proposed. This algorithm integrates the weight vector from the reliefF into SVM-RFE method. In this method, the reliefF filters out many noisy features in the first stage. Then the new ranking criterion based on SVM-RFE method is applied to obtain the final feature subset. The SVM classifier is used to evaluate the final image classification accuracy. Experimental results show that our proposed relief- SVM-RFE algorithm can achieve significant improvements for feature selection in image classification.展开更多
Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wi...Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wise label similarity is used tofind the matching images from the database.But this method lacks of limited propose code and weak execution of misclassified images.In order to get-rid of the above problem,a novel triplet based label that incorporates context-spatial similarity measure is proposed.A Point Attention Based Triplet Network(PABTN)is introduced to study propose code that gives maximum discriminative ability.To improve the performance of ranking,a corre-lating resolutions for the classification,triplet labels based onfindings,a spatial-attention mechanism and Region Of Interest(ROI)and small trial information loss containing a new triplet cross-entropy loss are used.From the experimental results,it is shown that the proposed technique exhibits better results in terms of mean Reciprocal Rank(mRR)and mean Average Precision(mAP)in the CIFAR-10 and NUS-WIPE datasets.展开更多
In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, t...In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, the block is considered informative. A total of 12 features including statistics of brightness, color components and texture measures are used to form intermediate vectors. Principal component analysis is then performed to reduce the dimension to 6 to give the final feature vectors. Relevance of the constructed feature vectors is demonstrated by experiments in which k-means clustering is used to group the vectors hence the blocks. Blocks falling into the same group show similar visual appearances.展开更多
The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Base...The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Based Image Retrieval(CBIR)has been widely used in varied applications.But,the results produced by the usage of a single image feature are not satisfactory.So,multiple image features are used very often for attaining better results.But,fast and effective searching for relevant images from a database becomes a challenging task.In the previous existing system,the CBIR has used the combined feature extraction technique using color auto-correlogram,Rotation-Invariant Uniform Local Binary Patterns(RULBP)and local energy.However,the existing system does not provide significant results in terms of recall and precision.Also,the computational complexity is higher for the existing CBIR systems.In order to handle the above mentioned issues,the Gray Level Co-occurrence Matrix(GLCM)with Deep Learning based Enhanced Convolution Neural Network(DLECNN)is proposed in this work.The proposed system framework includes noise reduction using histogram equalization,feature extraction using GLCM,similarity matching computation using Hierarchal and Fuzzy c-Means(HFCM)algorithm and the image retrieval using DLECNN algorithm.The histogram equalization has been used for computing the image enhancement.This enhanced image has a uniform histogram.Then,the GLCM method has been used to extract the features such as shape,texture,colour,annotations and keywords.The HFCM similarity measure is used for computing the query image vector's similarity index with every database images.For enhancing the performance of this image retrieval approach,the DLECNN algorithm is proposed to retrieve more accurate features of the image.The proposed GLCM+DLECNN algorithm provides better results associated with high accuracy,precision,recall,f-measure and lesser complexity.From the experimental results,it is clearly observed that the proposed system provides efficient image retrieval for the given query image.展开更多
The priority of the filled patch play a key role in the exemplar-based image inpainting, and it should be determined firstly to optimize the process of image inpainting. A modified image inpainting algorithm is propos...The priority of the filled patch play a key role in the exemplar-based image inpainting, and it should be determined firstly to optimize the process of image inpainting. A modified image inpainting algorithm is proposed by weighted-priority based on the Criminisi algorithm. The improved algorithm demonstrates better relationship between the data term and the confidence term for the optimization of the priority than the classical Criminisi algorithm. By comparing the effect of the inpainted images with different structure, conclusion can be drawn that the optimal priority should be chosen properly for different images with different structures.展开更多
A hierarchical structure method of content based image retrieval was proposed. During image preprocessing stage three semi automatic algorithms were used to extract image regions. String matching can be used to redu...A hierarchical structure method of content based image retrieval was proposed. During image preprocessing stage three semi automatic algorithms were used to extract image regions. String matching can be used to reduce image searching range. Smallest enclose rectangle(SER) and Hausdorff distance under region normalization were used to measure the similarity between trademark images while keeping invariant under transform(translation, rotation and scale) and noise tolerant. The experiment results show its efficiency.展开更多
Plants respond to drought stress with different physical manners, such as morphology and color of leaves. Thus, plants can be considered as a sort of living-sensors for monitoring dynamic of soil water content or the ...Plants respond to drought stress with different physical manners, such as morphology and color of leaves. Thus, plants can be considered as a sort of living-sensors for monitoring dynamic of soil water content or the stored water in plant body. Because of difficulty to identify the early wilting symptom of plants from the results in 2D (two-dimension) space, this paper presented a preliminary study with 3D (three-dimension)-based image, in which a laser scanner was used for achieving the morphological information of zucchini (Cucurbita pepo) leaves. Moreover, a leaf wilting index (DLWIF) was defined by fractal dimension. The experiment consisted of phase-1 for observing the temporal variation of DLWIF and phase-2 for the validation of this index. During the experiment, air temperature, luminous intensity, and volumetric soil water contents (VSWC) were simultaneously recorded over time. The results of both phases fitted the bisector (line: 1:1) with R2=0.903 and REMS=0.155. More significantly, the influence of VSWC with three levels (0.22, 0.30, and 0.36 cm3 cm-3) on the response of plant samples to drought stress was observed from separated traces of DLWIF. In brief, two conclusions have been made: (i) the laser scanner is an effective tool for the non-contact detection of morphological wilting of plants, and (ii) defined DLWIF can be a promising indicator for a category of plants like zucchini.展开更多
<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient to...<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and color similarity. Retrieving images based on the content which is color, texture, and shape is called content based image retrieval (CBIR). The content is actually the feature of an image and these features are extracted and used as the basis for a similarity check between images. The algorithms used to calculate the similarity between extracted features. There are two kinds of content based image retrieval which are general image retrieval and application specific image retrieval. For the general image retrieval, the goal of the query is to obtain images with the same object as the query. Such CBIR imitates web search engines for images rather than for text. For application specific, the purpose tries to match a query image to a collection of images of a specific type such as fingerprints image and x-ray. In this paper, the general architecture, various functional components, and techniques of CBIR system are discussed. CBIR techniques discussed in this paper are categorized as CBIR using color, CBIR using texture, and CBIR using shape features. This paper also describe about the comparison study about color features, texture features, shape features, and combined features (hybrid techniques) in terms of several parameters. The parameters are precision, recall and response time. </div>展开更多
When an image, which is decomposed by bi-orthogonal wavelet bases, is reconstructed, some information will be lost at the four edges of the image. At the same time, artificial discontinuities will be introduced. We us...When an image, which is decomposed by bi-orthogonal wavelet bases, is reconstructed, some information will be lost at the four edges of the image. At the same time, artificial discontinuities will be introduced. We use a method called symmetric extension to solve the problem. We only consider the case of the two-band filter banks, and the results can be applied to M-band filter banks. There are only two types of symmetric extension in analysis phrase, namely the whole-sample symmetry (WS), the half-sample symmetry (HS), while there are four types of symmetric extension in synthesis phrase, namely the WS, HS, the whole-sample anti-symmetry (WA), and the half-sample anti-symmetry (HA) respectively. We can select the exact type according to the image length and the filter length, and we will show how to do these. The image can be perfectly reconstructed without any edge effects in this way. Finally, simulation results are reported. Key words edge effect - image compression - wavelet - biorthogonal bases - symmetric extension CLC number TP 37 Foundation item: Supported by the National 863 Project (20021111901010)Biography: Yu Sheng-sheng (1944-), male, Professor, research direction: multimedia information processing, SAN.展开更多
The experimental investigation of unsteady complex flow fields in wind tunnels requires advanced measurement techniques. The most important of such image based measurement techniques are those for the measurement of p...The experimental investigation of unsteady complex flow fields in wind tunnels requires advanced measurement techniques. The most important of such image based measurement techniques are those for the measurement of planar flow velocity fields, planar pressure distribution, model location and deformation, model temperature and quantitative high speed flow visualization. The applications as carried out by DLR range from low speed flows to transonic flows, from high lift configurations to propellers and rotors, from wake vortex investigations in catapult facilities and water towing tanks to investigations of vortex break down phenomena on delta wings. The capability to use image based measurement techniques in transonic flows requires dedicated technical developments and experienced scientists due to the special environment of a transonic wind tunnel. In this paper an overview of the state-of-the art of the application of image based measurement techniques in transonic flows as performed by DLR's Institute of Aerodynamics and Flow Technology will be given.展开更多
Cervical cancer is the one of the most common cancer in female patients inThailand. Radiotherapy has the role for the treatment of cervical cancer by postoperative, radical and palliative treatments. For radical radio...Cervical cancer is the one of the most common cancer in female patients inThailand. Radiotherapy has the role for the treatment of cervical cancer by postoperative, radical and palliative treatments. For radical radiotherapy, the combination of external beam radiation therapy and brachytherapy will be used to increase the tumor dose to curative goal. With the new development of medical images (Computed tomography (CT), Magnetic Resonance Imaging (MRI) or Ultrasonography (US)), the treatment with brachytherapy will be developed from point-based to volume-based concepts. Many studies reported the benefit of image-based brachytherapy over conventional brachytherapy and clinical benefit of using image-based brachytherapy in the treatment of cervical cancer.展开更多
A new method of back propagation learning with respect to the problem of image restora- tion which is named as greyscale based learning in back propagation neural networks (BPNN) is in- vestigated. It is observed th...A new method of back propagation learning with respect to the problem of image restora- tion which is named as greyscale based learning in back propagation neural networks (BPNN) is in- vestigated. It is observed that by using this method the value of mean square error (MSE) decreases significantly. In addition, this method also gives good visual results when it is applied in image resto- ration problem. This method is also useful to tackle the inherited drawback of falling into local mini- ma by reducing its effect on overall system by bifurcating the learning locally different for different grey scale values. The performance of this algorithm has been studied in detail with different combi- nations of weights. In short, this algorithm provides much better results especially when compared with the simple back propagation algorithm with any further enhancements and without going for hy- brid solutions.展开更多
A novel content based image retrieval (CBIR) algorithmusing relevant feedback is presented. The proposed frameworkhas three major contributions: a novel feature descriptor calledcolor spectral histogram (CSH) to ...A novel content based image retrieval (CBIR) algorithmusing relevant feedback is presented. The proposed frameworkhas three major contributions: a novel feature descriptor calledcolor spectral histogram (CSH) to measure the similarity betweenimages; two-dimensional matrix based indexing approach proposedfor short-term learning (STL); and long-term learning (LTL).In general, image similarities are measured from feature representationwhich includes color quantization, texture, color, shapeand edges. However, CSH can describe the image feature onlywith the histogram. Typically the image retrieval process starts byfinding the similarity between the query image and the imagesin the database; the major computation involved here is that theselection of top ranking images requires a sorting algorithm to beemployed at least with the lower bound of O(n log n). A 2D matrixbased indexing of images can enormously reduce the searchtime in STL. The same structure is used for LTL with an aim toreduce the amount of log to be maintained. The performance ofthe proposed framework is analyzed and compared with the existingapproaches, the quantified results indicates that the proposedfeature descriptor is more effectual than the existing feature descriptorsthat were originally developed for CBIR. In terms of STL,the proposed 2D matrix based indexing minimizes the computationeffort for retrieving similar images and for LTL, the proposed algorithmtakes minimum log information than the existing approaches.展开更多
A new approach for photorealistic rendering of a class of objects at arbitrary illumination is presented. The approach of the authors relies entirely on image based rendering techniques. A scheme is utilized for re-il...A new approach for photorealistic rendering of a class of objects at arbitrary illumination is presented. The approach of the authors relies entirely on image based rendering techniques. A scheme is utilized for re-illumination of objects based on linear combination of low dimensional image representations. The minimum rendering condition of technique of the authors is three sample images under varying illumination of a reference object and a single input image of an interested object. Important properties of this approach are its simplicity, robustness and speediness. Experimental results validate the proposed rendering approach.展开更多
This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per u...This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.展开更多
文摘Since real world communication channels are not error free, the coded data transmitted on them may be corrupted, and block based image coding systems are vulnerable to transmission impairment. So the best neighborhood match method using genetic algorithm is used to conceal the error blocks. Experimental results show that the searching space can be greatly reduced by using genetic algorithm compared with exhaustive searching method, and good image quality is achieved. The peak signal noise ratios(PSNRs) of the restored images are increased greatly.
文摘BACKGROUND Determination of platybasia and basilar kyphosis are significant parts of routine cranial magnetic resonance(MR)interpretations.These situations may explain a patient’s symptoms or may be associated with other anomalies.AIM To indicate the interobserver and intraobserver reliability of the skull base angles(SBA)(Koenigsberg standard)and modified SBA(mSBA)measurement techniques.METHODS In total,391 patients who had undergone cranial MR imaging were re-assessed regarding the SBA measurements.The SBA and mSBA techniques were used on MR images.Two reviewers independently measured the same angles twice within a 15-day interval,using different monitors.Intraclass correlation coefficient(ICC)was calculated to reveal the intraobserver and interobserver agreements.RESULTS There was an excellent agreement between reviewers regarding both angle measurements(ICC was 0.998 for SBA and mSBA).Excellent agreement levels were also observed for intraobserver measurements.ICC was 0.998 for SBA and 0.999 for mSBA for reviewer 1.ICC was 0.997 for SBA and 0.999 for mSBA according to the measurement results of reviewer 2.Higher SBA and mSBA values were observed for females compared to males.There was no correlation between SBA and age for SBA.However,a negative and low-level correlation was observed between mSBA values and age for both reviewers.CONCLUSION SBA and mSBA measurements indicated excellent agreement regarding interobserver and intraobserver differences.The study results showed that SBA angles were reliable measurement techniques to be used on MR images.
基金Project (No. TMU 85-05-33) supported in part by the Iran Telecommunication Research Center (ITRC)
文摘The diagnostic potential of brain positron emission tomography (PET) imaging is limited by low spatial resolution. For solving this problem we propose a technique for the fusion of PET and MRI images. This fusion is a trade-off between the spectral information extracted from PET images and the spatial information extracted from high spatial resolution MRI. The proposed method can control this trade-off. To achieve this goal, it is necessary to build a multiscale fusion model, based on the retinal cell photoreceptors model. This paper introduces general prospects of this model, and its application in multispectral medical image fusion. Results showed that the proposed method preserves more spectral features with less spatial distortion. Comparing with hue-intensity-saturation (HIS), discrete wavelet transform (DWT), wavelet-based sharpening and wavelet-a trous transform methods, the best spectral and spatial quality is only achieved simultaneously with the proposed feature-based data fusion method. This method does not require resampling images, which is an advantage over the other methods, and can perform in any aspect ratio between the pixels of MRI and PET images.
文摘A new techinque for color based image retrieval is proposed. In this technique, the whole spectrum of a color image is divided into several sub ranges according to human visual characteristics. Then for each sub range, the cumulative histogram is used for similarity matching. It is shown that the color contents of image can be well captured by the sub range cumulative histogram. The new technique has been tested and compared with conventional techniques with the help of a database of 400 images of real flowers, which are quite complicated in color contents. Some satisfactory retrieval results are presented.
基金supported by the National Natural Science Foundation of China(6110118561302145)
文摘Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based on field image gray projection which enables the regional odd and even field image to be projected into x and y directions and thus to get the regional gray projection curves in x and y directions,respectively.For the odd field image channel,motion parameters can be estimated via iterative minimum absolute difference based on two successive field image regional gray projection curves.Then motion compensations can be obtained after using the Kalman filter method.Finally,the odd field image is adjusted according to the compensations.In the mean time,motion compensation is applied to the even field image channel with the odd field image gray projection curves of the current frame.By minimizing absolute difference between odd and even field image gray projection curves of the current frame,the inter-field motion parameters can be estimated.Therefore,the even field image can be adjusted by combining the inter-field motion parameters and the odd field compensations.Finally,the stabilized image sequence can be obtained by synthesizing the adjusted odd and even field images.Experimental results show that the proposed algorithm can run in real-time and have a good stabilization performance.In addition,image blurring can be improved.
文摘In this paper, a feature selection method combining the reliefF and SVM-RFE algorithm is proposed. This algorithm integrates the weight vector from the reliefF into SVM-RFE method. In this method, the reliefF filters out many noisy features in the first stage. Then the new ranking criterion based on SVM-RFE method is applied to obtain the final feature subset. The SVM classifier is used to evaluate the final image classification accuracy. Experimental results show that our proposed relief- SVM-RFE algorithm can achieve significant improvements for feature selection in image classification.
文摘Recent days,Image retrieval has become a tedious process as the image database has grown very larger.The introduction of Machine Learning(ML)and Deep Learning(DL)made this process more comfortable.In these,the pair-wise label similarity is used tofind the matching images from the database.But this method lacks of limited propose code and weak execution of misclassified images.In order to get-rid of the above problem,a novel triplet based label that incorporates context-spatial similarity measure is proposed.A Point Attention Based Triplet Network(PABTN)is introduced to study propose code that gives maximum discriminative ability.To improve the performance of ranking,a corre-lating resolutions for the classification,triplet labels based onfindings,a spatial-attention mechanism and Region Of Interest(ROI)and small trial information loss containing a new triplet cross-entropy loss are used.From the experimental results,it is shown that the proposed technique exhibits better results in terms of mean Reciprocal Rank(mRR)and mean Average Precision(mAP)in the CIFAR-10 and NUS-WIPE datasets.
基金Project supported by the National Natural Science Foundation of China (Grant No.60502039), the Shanghai Rising-Star Program (Grant No.06QA14022), and the Key Project of Shanghai Municipality for Basic Research (Grant No.04JC14037)
文摘In this work, image feature vectors are formed for blocks containing sufficient information, which are selected using a singular-value criterion. When the ratio between the first two SVs axe below a given threshold, the block is considered informative. A total of 12 features including statistics of brightness, color components and texture measures are used to form intermediate vectors. Principal component analysis is then performed to reduce the dimension to 6 to give the final feature vectors. Relevance of the constructed feature vectors is demonstrated by experiments in which k-means clustering is used to group the vectors hence the blocks. Blocks falling into the same group show similar visual appearances.
文摘The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Based Image Retrieval(CBIR)has been widely used in varied applications.But,the results produced by the usage of a single image feature are not satisfactory.So,multiple image features are used very often for attaining better results.But,fast and effective searching for relevant images from a database becomes a challenging task.In the previous existing system,the CBIR has used the combined feature extraction technique using color auto-correlogram,Rotation-Invariant Uniform Local Binary Patterns(RULBP)and local energy.However,the existing system does not provide significant results in terms of recall and precision.Also,the computational complexity is higher for the existing CBIR systems.In order to handle the above mentioned issues,the Gray Level Co-occurrence Matrix(GLCM)with Deep Learning based Enhanced Convolution Neural Network(DLECNN)is proposed in this work.The proposed system framework includes noise reduction using histogram equalization,feature extraction using GLCM,similarity matching computation using Hierarchal and Fuzzy c-Means(HFCM)algorithm and the image retrieval using DLECNN algorithm.The histogram equalization has been used for computing the image enhancement.This enhanced image has a uniform histogram.Then,the GLCM method has been used to extract the features such as shape,texture,colour,annotations and keywords.The HFCM similarity measure is used for computing the query image vector's similarity index with every database images.For enhancing the performance of this image retrieval approach,the DLECNN algorithm is proposed to retrieve more accurate features of the image.The proposed GLCM+DLECNN algorithm provides better results associated with high accuracy,precision,recall,f-measure and lesser complexity.From the experimental results,it is clearly observed that the proposed system provides efficient image retrieval for the given query image.
基金Supported by the National Natural Science Foundation of China (No. 60972106)Postdoctoral Science Foundation (No. 20090450750)the Science Foundation of Tianjin(No. 11JCYBJC00900)
文摘The priority of the filled patch play a key role in the exemplar-based image inpainting, and it should be determined firstly to optimize the process of image inpainting. A modified image inpainting algorithm is proposed by weighted-priority based on the Criminisi algorithm. The improved algorithm demonstrates better relationship between the data term and the confidence term for the optimization of the priority than the classical Criminisi algorithm. By comparing the effect of the inpainted images with different structure, conclusion can be drawn that the optimal priority should be chosen properly for different images with different structures.
文摘A hierarchical structure method of content based image retrieval was proposed. During image preprocessing stage three semi automatic algorithms were used to extract image regions. String matching can be used to reduce image searching range. Smallest enclose rectangle(SER) and Hausdorff distance under region normalization were used to measure the similarity between trademark images while keeping invariant under transform(translation, rotation and scale) and noise tolerant. The experiment results show its efficiency.
基金the Chinese-German Center for Scientific Promotion (Chinesisch-Deutsches Zentrum für Wissenschaftsfrderung) under the Project of Sino-German Research Group (GZ494)the Beijing Municipal Education Commission for Building Scientific Research and Scientific Research Base (2008BJKY01)+1 种基金the German Academic Exchange Service (DAAD),and China Scholarship Council (CSC) for enhancing our cooperationthe International Cooperation Fund of Ministry of Science and Technology, China (2010DFA34670)
文摘Plants respond to drought stress with different physical manners, such as morphology and color of leaves. Thus, plants can be considered as a sort of living-sensors for monitoring dynamic of soil water content or the stored water in plant body. Because of difficulty to identify the early wilting symptom of plants from the results in 2D (two-dimension) space, this paper presented a preliminary study with 3D (three-dimension)-based image, in which a laser scanner was used for achieving the morphological information of zucchini (Cucurbita pepo) leaves. Moreover, a leaf wilting index (DLWIF) was defined by fractal dimension. The experiment consisted of phase-1 for observing the temporal variation of DLWIF and phase-2 for the validation of this index. During the experiment, air temperature, luminous intensity, and volumetric soil water contents (VSWC) were simultaneously recorded over time. The results of both phases fitted the bisector (line: 1:1) with R2=0.903 and REMS=0.155. More significantly, the influence of VSWC with three levels (0.22, 0.30, and 0.36 cm3 cm-3) on the response of plant samples to drought stress was observed from separated traces of DLWIF. In brief, two conclusions have been made: (i) the laser scanner is an effective tool for the non-contact detection of morphological wilting of plants, and (ii) defined DLWIF can be a promising indicator for a category of plants like zucchini.
文摘<div style="text-align:justify;"> Digital image collection as rapidly increased along with the development of computer network. Image retrieval system was developed purposely to provide an efficient tool for a set of images from a collection of images in the database that matches the user’s requirements in similarity evaluations such as image content similarity, edge, and color similarity. Retrieving images based on the content which is color, texture, and shape is called content based image retrieval (CBIR). The content is actually the feature of an image and these features are extracted and used as the basis for a similarity check between images. The algorithms used to calculate the similarity between extracted features. There are two kinds of content based image retrieval which are general image retrieval and application specific image retrieval. For the general image retrieval, the goal of the query is to obtain images with the same object as the query. Such CBIR imitates web search engines for images rather than for text. For application specific, the purpose tries to match a query image to a collection of images of a specific type such as fingerprints image and x-ray. In this paper, the general architecture, various functional components, and techniques of CBIR system are discussed. CBIR techniques discussed in this paper are categorized as CBIR using color, CBIR using texture, and CBIR using shape features. This paper also describe about the comparison study about color features, texture features, shape features, and combined features (hybrid techniques) in terms of several parameters. The parameters are precision, recall and response time. </div>
文摘When an image, which is decomposed by bi-orthogonal wavelet bases, is reconstructed, some information will be lost at the four edges of the image. At the same time, artificial discontinuities will be introduced. We use a method called symmetric extension to solve the problem. We only consider the case of the two-band filter banks, and the results can be applied to M-band filter banks. There are only two types of symmetric extension in analysis phrase, namely the whole-sample symmetry (WS), the half-sample symmetry (HS), while there are four types of symmetric extension in synthesis phrase, namely the WS, HS, the whole-sample anti-symmetry (WA), and the half-sample anti-symmetry (HA) respectively. We can select the exact type according to the image length and the filter length, and we will show how to do these. The image can be perfectly reconstructed without any edge effects in this way. Finally, simulation results are reported. Key words edge effect - image compression - wavelet - biorthogonal bases - symmetric extension CLC number TP 37 Foundation item: Supported by the National 863 Project (20021111901010)Biography: Yu Sheng-sheng (1944-), male, Professor, research direction: multimedia information processing, SAN.
文摘The experimental investigation of unsteady complex flow fields in wind tunnels requires advanced measurement techniques. The most important of such image based measurement techniques are those for the measurement of planar flow velocity fields, planar pressure distribution, model location and deformation, model temperature and quantitative high speed flow visualization. The applications as carried out by DLR range from low speed flows to transonic flows, from high lift configurations to propellers and rotors, from wake vortex investigations in catapult facilities and water towing tanks to investigations of vortex break down phenomena on delta wings. The capability to use image based measurement techniques in transonic flows requires dedicated technical developments and experienced scientists due to the special environment of a transonic wind tunnel. In this paper an overview of the state-of-the art of the application of image based measurement techniques in transonic flows as performed by DLR's Institute of Aerodynamics and Flow Technology will be given.
文摘Cervical cancer is the one of the most common cancer in female patients inThailand. Radiotherapy has the role for the treatment of cervical cancer by postoperative, radical and palliative treatments. For radical radiotherapy, the combination of external beam radiation therapy and brachytherapy will be used to increase the tumor dose to curative goal. With the new development of medical images (Computed tomography (CT), Magnetic Resonance Imaging (MRI) or Ultrasonography (US)), the treatment with brachytherapy will be developed from point-based to volume-based concepts. Many studies reported the benefit of image-based brachytherapy over conventional brachytherapy and clinical benefit of using image-based brachytherapy in the treatment of cervical cancer.
基金Supported by the National Natural Science Foundation of China(60772066)Higher Education Commission,Pakistan
文摘A new method of back propagation learning with respect to the problem of image restora- tion which is named as greyscale based learning in back propagation neural networks (BPNN) is in- vestigated. It is observed that by using this method the value of mean square error (MSE) decreases significantly. In addition, this method also gives good visual results when it is applied in image resto- ration problem. This method is also useful to tackle the inherited drawback of falling into local mini- ma by reducing its effect on overall system by bifurcating the learning locally different for different grey scale values. The performance of this algorithm has been studied in detail with different combi- nations of weights. In short, this algorithm provides much better results especially when compared with the simple back propagation algorithm with any further enhancements and without going for hy- brid solutions.
文摘A novel content based image retrieval (CBIR) algorithmusing relevant feedback is presented. The proposed frameworkhas three major contributions: a novel feature descriptor calledcolor spectral histogram (CSH) to measure the similarity betweenimages; two-dimensional matrix based indexing approach proposedfor short-term learning (STL); and long-term learning (LTL).In general, image similarities are measured from feature representationwhich includes color quantization, texture, color, shapeand edges. However, CSH can describe the image feature onlywith the histogram. Typically the image retrieval process starts byfinding the similarity between the query image and the imagesin the database; the major computation involved here is that theselection of top ranking images requires a sorting algorithm to beemployed at least with the lower bound of O(n log n). A 2D matrixbased indexing of images can enormously reduce the searchtime in STL. The same structure is used for LTL with an aim toreduce the amount of log to be maintained. The performance ofthe proposed framework is analyzed and compared with the existingapproaches, the quantified results indicates that the proposedfeature descriptor is more effectual than the existing feature descriptorsthat were originally developed for CBIR. In terms of STL,the proposed 2D matrix based indexing minimizes the computationeffort for retrieving similar images and for LTL, the proposed algorithmtakes minimum log information than the existing approaches.
文摘A new approach for photorealistic rendering of a class of objects at arbitrary illumination is presented. The approach of the authors relies entirely on image based rendering techniques. A scheme is utilized for re-illumination of objects based on linear combination of low dimensional image representations. The minimum rendering condition of technique of the authors is three sample images under varying illumination of a reference object and a single input image of an interested object. Important properties of this approach are its simplicity, robustness and speediness. Experimental results validate the proposed rendering approach.
文摘This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.