This paper reports that the ratios of double to single electron loss cross-section (R) of O^2+ in collision with Ar and He at the velocity of 1 -4 vo(vo is the Bohr velocity) have been obtained by the coincidence...This paper reports that the ratios of double to single electron loss cross-section (R) of O^2+ in collision with Ar and He at the velocity of 1 -4 vo(vo is the Bohr velocity) have been obtained by the coincidence technique. The trend of R - V in the experiment indicates that the effective charge varies with injected velocity. The effective charge can be obtained by the n-body classical trajectory Monte Carlo method, which is interpreted by the molecular Coulomb over barrier model.展开更多
In this paper a projectile ion-recoil ion coincidence technique is used to investigate the transfer ionization processes in collisions of 0.22-6.30 MeV Cq+ ions and 0.25-6.35 MeV 0q+ ions (q=1, 2, 3, 4) with the H...In this paper a projectile ion-recoil ion coincidence technique is used to investigate the transfer ionization processes in collisions of 0.22-6.30 MeV Cq+ ions and 0.25-6.35 MeV 0q+ ions (q=1, 2, 3, 4) with the He atom separately. The cross section ratio f of transfer ionization to single electron transfer is measured, and the dependence of f on both charge state q and energy E of the projectiles is investigated. The electron-structure and the mechanisms leading to transfer ionization affect the dependence of f on q and E. Our measurements, along with other data published previously, suggest a similar dependence of f on charge state and energy of projectile for partially stripped ions over a large energy range. The maximum value of f is approximately 0.17q^0.60; the energy corresponding to maximum f is about 160q^0.60 keV/u.展开更多
We present a theoretical investigation of plasma generation in sodium vapor induced by laser radiation tuned to the first resonance line (3S-3P) at λ = 589 ns. A set of rate equations that describe the rate of change...We present a theoretical investigation of plasma generation in sodium vapor induced by laser radiation tuned to the first resonance line (3S-3P) at λ = 589 ns. A set of rate equations that describe the rate of change of the ground and excited states population as well as the temporal variation of the electron energy distribution function (EEDF), beside the formed atomic ion Na+, molecular ion ?and tri-atomic ions are solved numerically. The calculations are carried out at different laser energy and different sodium atomic vapor densities under the experimental conditions of Tapalian and Smith (1993) to test the existence of the formed tri-atomic ions. The numerical calculations of the electron energy distribution function (EEDF) show that a deviation from the Maxwellian distribution due to the super elastic collisions effect. In addition to the competition between associative ionization (3P-3P), associative ionization (3P-3D) and Molnar-Horn- beck ionization processes for producing , the calculations have also shown that the atomic ions Na+ are formed through the Penning ionization and photoionization processes. These results are found to be consistent with the experimental observations.展开更多
The present work reports an investigation on the role played by Na3+ ions formed through triatomic associative ionization collision of Na(4d) atoms with Na2 ground state molecules during the early phase of sodium plas...The present work reports an investigation on the role played by Na3+ ions formed through triatomic associative ionization collision of Na(4d) atoms with Na2 ground state molecules during the early phase of sodium plasma generation by laser ionization based on resonance saturation (LIBORS). Such ionization mechanism is observed experimentally for the first time by Tapalian and Smith (1993) [1]. In their experiment, stepwise atomic excitations are created using two CW dye lasers;one laser is tuned to 589 nm to excite the Na(3s) to Na(3p) D2 transition of sodium and the other laser is tuned 569 nm to excite the Na(3p) to Na(4d) transition. The analysis is grounded on a numerical study of the role of seed electron processes on the temporal evolution of sodium plasma formation by laser irradiation. A previously developed numerical model based on LIBORS technique is modified and adopted. In the present study, the sodium atom is treated as an atom comprises 22 levels namely: a ground state, 18 excited states and three ionic states (atomic, molecular and tri-atomic). The model tackled various collisional and radiative processes that act to enhance and deplete the free electrons generated in the interaction region. The contribution of these processes is signified by solving numerically a system of time-dependent rate equations, which couple the generated atomic and ionic species with the laser fields. Meanwhile, it solves the time-dependent Boltzmann equation for the electron energy distribution function (EEDF) of the generated electrons. The computed values of the EEDF, time evolution of both excited states population and the formed ionic species considering the individual effect of associative ionization, Penning, and photo-ionization and triatomic associative ionization justified the important effect of each of these ionizing processes in creating the early stage electrons. These seed electrons are assumed to rapidly gain energy through superelastic collisions leading eventually to plasma development.展开更多
基金supported by the Special Foundation for State Major Basic Research Program of China (Grant No 2002CCA00900)
文摘This paper reports that the ratios of double to single electron loss cross-section (R) of O^2+ in collision with Ar and He at the velocity of 1 -4 vo(vo is the Bohr velocity) have been obtained by the coincidence technique. The trend of R - V in the experiment indicates that the effective charge varies with injected velocity. The effective charge can be obtained by the n-body classical trajectory Monte Carlo method, which is interpreted by the molecular Coulomb over barrier model.
文摘In this paper a projectile ion-recoil ion coincidence technique is used to investigate the transfer ionization processes in collisions of 0.22-6.30 MeV Cq+ ions and 0.25-6.35 MeV 0q+ ions (q=1, 2, 3, 4) with the He atom separately. The cross section ratio f of transfer ionization to single electron transfer is measured, and the dependence of f on both charge state q and energy E of the projectiles is investigated. The electron-structure and the mechanisms leading to transfer ionization affect the dependence of f on q and E. Our measurements, along with other data published previously, suggest a similar dependence of f on charge state and energy of projectile for partially stripped ions over a large energy range. The maximum value of f is approximately 0.17q^0.60; the energy corresponding to maximum f is about 160q^0.60 keV/u.
文摘We present a theoretical investigation of plasma generation in sodium vapor induced by laser radiation tuned to the first resonance line (3S-3P) at λ = 589 ns. A set of rate equations that describe the rate of change of the ground and excited states population as well as the temporal variation of the electron energy distribution function (EEDF), beside the formed atomic ion Na+, molecular ion ?and tri-atomic ions are solved numerically. The calculations are carried out at different laser energy and different sodium atomic vapor densities under the experimental conditions of Tapalian and Smith (1993) to test the existence of the formed tri-atomic ions. The numerical calculations of the electron energy distribution function (EEDF) show that a deviation from the Maxwellian distribution due to the super elastic collisions effect. In addition to the competition between associative ionization (3P-3P), associative ionization (3P-3D) and Molnar-Horn- beck ionization processes for producing , the calculations have also shown that the atomic ions Na+ are formed through the Penning ionization and photoionization processes. These results are found to be consistent with the experimental observations.
文摘The present work reports an investigation on the role played by Na3+ ions formed through triatomic associative ionization collision of Na(4d) atoms with Na2 ground state molecules during the early phase of sodium plasma generation by laser ionization based on resonance saturation (LIBORS). Such ionization mechanism is observed experimentally for the first time by Tapalian and Smith (1993) [1]. In their experiment, stepwise atomic excitations are created using two CW dye lasers;one laser is tuned to 589 nm to excite the Na(3s) to Na(3p) D2 transition of sodium and the other laser is tuned 569 nm to excite the Na(3p) to Na(4d) transition. The analysis is grounded on a numerical study of the role of seed electron processes on the temporal evolution of sodium plasma formation by laser irradiation. A previously developed numerical model based on LIBORS technique is modified and adopted. In the present study, the sodium atom is treated as an atom comprises 22 levels namely: a ground state, 18 excited states and three ionic states (atomic, molecular and tri-atomic). The model tackled various collisional and radiative processes that act to enhance and deplete the free electrons generated in the interaction region. The contribution of these processes is signified by solving numerically a system of time-dependent rate equations, which couple the generated atomic and ionic species with the laser fields. Meanwhile, it solves the time-dependent Boltzmann equation for the electron energy distribution function (EEDF) of the generated electrons. The computed values of the EEDF, time evolution of both excited states population and the formed ionic species considering the individual effect of associative ionization, Penning, and photo-ionization and triatomic associative ionization justified the important effect of each of these ionizing processes in creating the early stage electrons. These seed electrons are assumed to rapidly gain energy through superelastic collisions leading eventually to plasma development.