The effects of plasma (ions, electrons) and other energetic particles are now widely used for substrate cleaning as well as to assist and control thin film growth and various applications. In this work, historical r...The effects of plasma (ions, electrons) and other energetic particles are now widely used for substrate cleaning as well as to assist and control thin film growth and various applications. In this work, historical review of the plasma and its various types are given and described. Different types of gas discharge and plasma production are also discussed in detail. Furthermore, technique of ion beam extraction from a plasma source for sputtering process by using a suitable electrode is carefully studied and given. In further consequence, a general review about the physics and mechanism of sputtering processes is studied. Different types of sputtering techniques are investigated and clarified. Theoretical treatment for determination of sputtering yield for low and high atomic species elements as a function of energy from 100 to 5,000 eV are studied and discussed. Finally, various applications of plasma-and-ion beam sputtering will also be mentioned and discussed.展开更多
Self-assembled Ge nanodots with areal number density up to 2.33× 1010 cm-2 and aspect ratio larger than 0.12 are prepared by ion beam sputtering deposition. The dot density, a function of deposition rate and Ge c...Self-assembled Ge nanodots with areal number density up to 2.33× 1010 cm-2 and aspect ratio larger than 0.12 are prepared by ion beam sputtering deposition. The dot density, a function of deposition rate and Ge coverage, is observed to be limited mainly by the transformation from two-dimensional precursors to three-dimensional islands, and to be associated with the adatom behaviors of attachment and detachment from the islands. An unusual increasing temperature dependence of nanodot density is also revealed when a high ion energy is employed in sputtering deposition, and is shown to be related to the breaking down of the superstrained wetting layer. This result is attributed to the interaction between energetic atoms and the growth surface, which mediates the island nucleation.展开更多
Nanoscale thick amorphous Ni-Cr alloy thin films were fabricated by low-energy ion beam sputtering technology; then the as-deposited samples experienced rapid thermal process to realize the transformation from amorpho...Nanoscale thick amorphous Ni-Cr alloy thin films were fabricated by low-energy ion beam sputtering technology; then the as-deposited samples experienced rapid thermal process to realize the transformation from amorphous to crystalline state. The film thickness was measured with a-stylus surface profiler, the structure and the compositions of the films were confirmed by low angle X-ray diffraction and scanning auger electron microprobe respectively, and the surface topography was characterized by scanning electron microscope and scanning probe microscope. Electrical property of the films was measured by fourpoint probe. The experimental results illustrate that the combined processes of ion beam sputtering and rajid thermal process are effective for fabrication nanoscale Ni-Cr alloy thin film with good properties.展开更多
Since the discovery of high T;super-conductor, much effort was made toits application. More and more evidencehas revealed that most promising fieldof high T;superconductor first to havesuccess must be the microelectro...Since the discovery of high T;super-conductor, much effort was made toits application. More and more evidencehas revealed that most promising fieldof high T;superconductor first to havesuccess must be the microelectronics andcomputer. Superconductor films for mi-croelectronic application are preparedby PVD method, such as electron beamevaporation, pulsed laser evaporation andmagnetron sputtering. In this paper, thepreliminary results of ion beam sputteringdeposition of YBaCuO film are reported展开更多
Fe-N films were prepared on Si substrate by dual ion beam sputtering (DIBS). It is found that the crystal structure of the films varies from α-Fe, to ε-Fe2-3N, ε-Fe2-3N +γ-Fe4N, and finally γ'-Fe4N with the i...Fe-N films were prepared on Si substrate by dual ion beam sputtering (DIBS). It is found that the crystal structure of the films varies from α-Fe, to ε-Fe2-3N, ε-Fe2-3N +γ-Fe4N, and finally γ'-Fe4N with the increase in substrate temperature (TS). The magnetic properties of the films were investigated by a vibrating sample magnetometer (VSM). The structure of the films is insensitive to the ratios of N2/Ar in main ion source(MIS), and is mainly influenced by the substrate temperature (Ts).展开更多
The bonding and electronic structure of Cu/(0001)Al2O3 and Cu/(1120)Al2O3 interfaces has been studied experimentally using spatially-resolved transmission electron energy loss spectroscopy. The specimen were prepared ...The bonding and electronic structure of Cu/(0001)Al2O3 and Cu/(1120)Al2O3 interfaces has been studied experimentally using spatially-resolved transmission electron energy loss spectroscopy. The specimen were prepared by depositing Cu on single-crystal α-AI2O3 substrates, which have been Ar+-ion sputter-cleaned prior to the growth of Cu. For both orientations of the α-Al2O3 substrate, atomically abrupt interfaces formed as determined by high-resolution transmission electron microscopy. The investigations of the interfacial Cu-L2,3, Al-L2,3 and 0-K energy loss near-edge structures, which are proportional to the site- and angular-momentum-projected unoccupied density of states above the Fermi level, indicate the existence of metallic Cu-AI bonds at the Cu/AI2O3 interface independent of the substrate orientation.展开更多
he present paper focuses on the modifying effects of ion beam mixing, ion im-planting and ion sputtering on hydrogen evolution electrodes. It was discovered thatthe four types of electrodes possessed excellent catalyt...he present paper focuses on the modifying effects of ion beam mixing, ion im-planting and ion sputtering on hydrogen evolution electrodes. It was discovered thatthe four types of electrodes possessed excellent catalytic activity in acid or alkalinemedia and potential stability in long term electrolysis of water under high currentdensity. Their stability and applying life-span greatly surpass those of other elec-trodes activated by electrodepositing and other method. The effects of temperatureand roughness on function of electrodes were also examined. XPS and AES wereapplied to analyse the surface composition and bond states of the electrodes, andthe distribution of concentration varying with depth, and to explain the law of theexperiments .展开更多
ZrO2 films on NaCl(100) substrate produced by oxygen ion bombardment and argon ion sputtering of Zr are analysed using TEM, XRD and XPS. The result of TEM shows that only cubic phase exists for the ZrO2 film produced ...ZrO2 films on NaCl(100) substrate produced by oxygen ion bombardment and argon ion sputtering of Zr are analysed using TEM, XRD and XPS. The result of TEM shows that only cubic phase exists for the ZrO2 film produced by oxygen ion bombardment with 30μA/cm2 and 200eV, while the XRD result shows that there seems to exhibit a small quanitity of monoclinic phase apart from cubic one under the production condition of oxygen ion of 25μA/cm2, 100eV.展开更多
Cu2ZnSnS4 (CZTS) thin films were successfully prepared by sulfurization of ion bean sputtered precursors on soda-lime glass substrate. The single phase of stannite-type structure CZTS films were obtained as revealed i...Cu2ZnSnS4 (CZTS) thin films were successfully prepared by sulfurization of ion bean sputtered precursors on soda-lime glass substrate. The single phase of stannite-type structure CZTS films were obtained as revealed in EDS and XRD analysis when the ratios of the constituents of CZTS thin films are close to stoichiometric by optimizing the conditions of precursor preparation and sulfurization. A low sheet resistivity as about 0.156 Ω·cm and a high absorption coefficient as 1×104 cm-1 were achieved in this method by Hall effect measurements and UV-VIS spectrophotometer. The optical band-gap energy of the CZTS sample is about 1.51 eV, which is very close to the optimum value for a solar-cell absorber.展开更多
Vanadium dioxide thin films were fabricated through annealing vanadium oxide thin films deposited by dual ion beam sputtering. X-ray diffraction (XRD), atom force microscopy (AFM), and Fourier transform infrared s...Vanadium dioxide thin films were fabricated through annealing vanadium oxide thin films deposited by dual ion beam sputtering. X-ray diffraction (XRD), atom force microscopy (AFM), and Fourier transform infrared spectrum (FTIR) were employed to measure the crystalline structure, surface morphology, and infrared optical transmittance. The phase transition properties were characterized by transmittance. The results show that the annealed vanadium oxide thin film is composed of monoclinic VO2, with preferred orientation of (011). The maximum of transmittance change is beyond 65% as the temperature increases from 20 to 80 C. The reversible changes in optical transmittance against temperature were observed. The change rate of transmittance at short wavelength is higher than that at long wavelength at the same temperature across semiconductor-metal phase transition. This phenomenon was discussed using diffraction effect.展开更多
The principle of magnetron sputtering is introduced andthe balanced and unbalanced magnetrons are compared andthe necessity of unbalanced magnetrons is explained as well. Several recent developments in plasma magnetro...The principle of magnetron sputtering is introduced andthe balanced and unbalanced magnetrons are compared andthe necessity of unbalanced magnetrons is explained as well. Several recent developments in plasma magnetron sputtering, i.e., unbalanced magnetron sputtering, pulsed magnetron sputtering and ion assisted sputtering, are discussed. The recent developments of unbalanced magnetron systems and their incorporation with ion sources result in an understanding in growingimportance of the magnetron sputtering technology, which makes the technology an applicable deposition process for a variety of important films, such as wear-resistant films and decorative films.展开更多
Using ZnO buffer layers prepared by simply thermal oxidation of ion beam sputtered Zn films, highly oriented and uniformly aligned single-crystalline ZnO micropillars arrays have been synthesized by thermal evaporatio...Using ZnO buffer layers prepared by simply thermal oxidation of ion beam sputtered Zn films, highly oriented and uniformly aligned single-crystalline ZnO micropillars arrays have been synthesized by thermal evaporation of Zn powder with flee catalysts at low temperature of 430℃ The ZnO micropillars show sharp hexagonal umbrella-like tips with thin ZnO nanowire grown on the tips. The umbrella-like tips grow in a layer-by-layer mode along the direction of [001]. The growth mechanism has been discussed. The formation of the micropillars basically depends on the gradually decreasing Zn vapor pressure and subsequently cooling process. The photoluminescence (PL) spectrum indicates a moderately good crystal quality of the ZnO micropillars. Our results may reinforce the understanding of the formation mechanism of different ZnO nano/microstructures. This kind of complex microstructures may find potential applications in multifunctional microdevices, optoelectronic and field emission devices.展开更多
Vanadium dioxide(VO 2)thin films are used for protection from high-energy laser hits due to their semiconductor-to-metal phase transition experienced during heating at temperature of approximately 68 ℃,which followed...Vanadium dioxide(VO 2)thin films are used for protection from high-energy laser hits due to their semiconductor-to-metal phase transition experienced during heating at temperature of approximately 68 ℃,which followed by a abrupt change of optical behavior, namely from transparent semiconductor state below 68 ℃ to highly reflective metallic state beyond 68 ℃.The preparation and properties of the films are described as well as the primary principle of the device for protection from high energy laser hits. An ion-beam-sputtering system is used to deposit VO 2 thin films.The technique is reactive ion beam sputtering of vanadium at temperature of 200 ℃ on Si, Ge and Si 3N 4 substrates in a well controlled atmosphere of argon with a partial pressure of O 2, followed by a post annealing at 400-550 ℃ with argon gas.The optical transmittance changes from 60% to 4% are obtained within the temperature range from 50 ℃ to 70 ℃. X-ray diffraction (XRD) shows that the films are of single-phase VO 2.展开更多
Ti-Cu films with different Cu concentrations were fabricated by high-power pulsed magnetron sputtering(HPPMS) to release copper ions and catalyze NO to improve the blood compatibility. The Cu concentrations of films...Ti-Cu films with different Cu concentrations were fabricated by high-power pulsed magnetron sputtering(HPPMS) to release copper ions and catalyze NO to improve the blood compatibility. The Cu concentrations of films were 25.7 at% and 68.8 at%. Pure Ti films were also fabricated. Copper release, catalytic release of nitric oxide(NO), and blood platelet adhesion of Ti-Cu films were studied. Ti-Cu films released copper ions in PBS solution and more Cu ions were released from films with 68.8 at% Cu. Ti-Cu films had excellent ability of catalytical decomposition of exogenous donor S-nitroso-N-acetyl-DL-penicillamine(SNAP) and as a result, nitric oxide(NO) was generated. The NO generation catalyzed by Ti-Cu films was significantly higher than that by pure Ti films. This was more eminent in the Ti-Cu films with 68.8 at% Cu. The platelet adhesion and activation of Ti-Cu films were significantly inhibited compared to that of pure Ti films in the presence of SNAP. The Ti-Cu film fabricated by HPPMS showed the ability of releasing Cu ions to catalyze SNAP to generate NO to inhibit platelet adhesion and activation.展开更多
The development of solution strategies for Zinc oxide (ZnO) quantum dots provides a pathway to utilizing ZnO nanocrystal thin films in optoelectronic devices. In this work, quasi-spherical ZnO quantum dots with a di...The development of solution strategies for Zinc oxide (ZnO) quantum dots provides a pathway to utilizing ZnO nanocrystal thin films in optoelectronic devices. In this work, quasi-spherical ZnO quantum dots with a diameter of 5 nm are synthesized by using ethanol as a solvent. ZnO nanocrystal thin film is obtained by spin-coating ZnO quantum dots on a Au interdigital electrode (IDE)/AI203 substrate and annealing at different temperatures in order to yield the optimal pho- tosensitive on/off ratio of ZnO. For further enhancing the responsivity, ion sputtering is utilized to deposit Pt nanoparticles on the surface of ZnO nanocrystal thin film, the responsivity of the ZnO/Pt bilayer nanostructure increases from 0.07 A/W to 54 A/W, showing that the metal/inorganic nanocrystal bilayer nanostructure can be used to improve the performance of optoelectronic devices. The excellent properties of ZnO/Pt bilayer nanostructure have important applications in future electronic and optoelectronic devices.展开更多
MoS2/Zr composite films were deposited on the cemented carbide YT14 (WC+14%TiC+6%Co) by medium-frequency magnetron sputtered and coupled with multi-arc ion plated techniques.The influence of negative bias voltage ...MoS2/Zr composite films were deposited on the cemented carbide YT14 (WC+14%TiC+6%Co) by medium-frequency magnetron sputtered and coupled with multi-arc ion plated techniques.The influence of negative bias voltage on the composite film properties,including adhesion strength,micro-hardness,thickness and tribological properties were investigated.The results showed that proper negative bias voltage could significantly improve the mechanical and tribological properties of composite films.The effects of negative bias voltage on film properties were also put forward.The optimal negative bias voltage was -200 V under this experiment conditions.The obtained composite films were dense,the adhesion strength was about 60 N,the thickness was about 2.4 μm,and the micro-hardness was about 9.0 GPa.The friction coefficient and wear rate was 0.12 and 2.1×10-7 cm3/N·m respectively after 60 m sliding operation against hardened steel under a load of 20 N and a sliding speed of 200 rev·min-1.展开更多
The thin film gas sensors of bismuth iron molybdate were prepared by ion beam sputtering technique. The prototype gas sensors studied have high sensitivity and selectivity to reducing gases, such as ethanol vapor, s...The thin film gas sensors of bismuth iron molybdate were prepared by ion beam sputtering technique. The prototype gas sensors studied have high sensitivity and selectivity to reducing gases, such as ethanol vapor, show a long term stability of response under most operating conditions and insensitivity to atmospheric humidity, and respond quickly comparing to traditional sintered gas sensors. The crystallographic structure and phase composition of these thin films were investigated with XRD, XPS and SEM techniques.展开更多
In the present state of the art,ion beam sputtering is used to produce low-loss dielectric optics.During the manufacturing of a dielectric layer stack,the deposition material must be changed,which requires rapid mecha...In the present state of the art,ion beam sputtering is used to produce low-loss dielectric optics.During the manufacturing of a dielectric layer stack,the deposition material must be changed,which requires rapid mechanical movement of vacuum components.These mechanical components can be regarded as a risk factor for contamination during the coating process,which limits the quality of high-end laser components.To minimize the particle contamination,we present a novel deposition concept that does not require movable components to change the coating material during the coating process.A magnetic field guiding technique has been developed,which enables the tuning of the refractive index in the layer structure by sputtering mixtures with varying compositions of two materials using a single-ion source.The versatility of this new concept is demonstrated for a highreflection mirror.展开更多
Electro-deposition, electrical activation, thermal oxidation, and reactive ion sputtering are the four primary methods to fabricate iridium oxide film. Among these methods, reactive ion sputtering is a commonly used m...Electro-deposition, electrical activation, thermal oxidation, and reactive ion sputtering are the four primary methods to fabricate iridium oxide film. Among these methods, reactive ion sputtering is a commonly used method in standard micro-fabrication processes. In different sputtering conditions, the component, texture, and electrochemistry character of iridium oxide varies considerably. To fabricate the iridium oxide film compatible with the wafer-level processing of neural electrodes, the quality of iridium oxide film must be able to withstand the mechanical and chemical impact of post-processing, and simultaneously achieve good performance as a neural electrode. In this study, parameters of sputtering were researched and developed to achieve a balance between mechanical stability and good electrochemical characteristics of iridium oxide film on electrode. Iridium oxide fabricating process combined with fabrication flow of silicon electrodes, at wafer-level, is introduced to produce silicon based planar iridium oxide neural electrodes. Compared with bare gold electrodes, iridium oxide electrodes fabricated with this method exhibit particularly good electrochemical stability, low impedance of 386 kW at 1 kH z, high safe charge storage capacity of 3.2 m C/cm^2, and good impedance consistency of less than 25% fluctuation.展开更多
Cu2ZnSnS4 (CZTS) thin films were successfully fabricated on glass substrates by sulfurizing Cu-Sn-Zn multilayer precursors, which were deposited by ion beam sputtering and RF magnetron sputtering, respectively. The st...Cu2ZnSnS4 (CZTS) thin films were successfully fabricated on glass substrates by sulfurizing Cu-Sn-Zn multilayer precursors, which were deposited by ion beam sputtering and RF magnetron sputtering, respectively. The structural, electrical and optical properties of the prepared films under various processing conditions were investigated in detail. Results showed that the as-deposited CZTS thin films with the precursors by both ion beam sputtering and RF magnetron sputtering have a composition near stoichiometric. The crystallization of the samples, however, has a strong dependence on the atomic percent of constituents of the prepared CZTS films. A single phase stannite-type structure CZTS with a large absorption coefficient of 104/cm in the visible range could be obtained after sulfurization at 520℃ for 2 h. The samples relative to the RF magnetron sputtering showed a low resistivity of 0.073 ?cm and band gap energy of about 1.53 eV. The samples relative to the ion beam sputtering exhibited a resistivity of 0.36 Ωcm and the band gap energy is about 1.51 eV.展开更多
文摘The effects of plasma (ions, electrons) and other energetic particles are now widely used for substrate cleaning as well as to assist and control thin film growth and various applications. In this work, historical review of the plasma and its various types are given and described. Different types of gas discharge and plasma production are also discussed in detail. Furthermore, technique of ion beam extraction from a plasma source for sputtering process by using a suitable electrode is carefully studied and given. In further consequence, a general review about the physics and mechanism of sputtering processes is studied. Different types of sputtering techniques are investigated and clarified. Theoretical treatment for determination of sputtering yield for low and high atomic species elements as a function of energy from 100 to 5,000 eV are studied and discussed. Finally, various applications of plasma-and-ion beam sputtering will also be mentioned and discussed.
基金Project supported by the Joint Fund of National Natural Science Foundation of China and Yunnan Province, China (Grant No. U1037604)the Applied Basic Research Foundations of Yunnan Province, China (Grant No. 2009CD003)the Scientific Research Foundation of Yunnan University, China (Grant No. 2009E28Q)
文摘Self-assembled Ge nanodots with areal number density up to 2.33× 1010 cm-2 and aspect ratio larger than 0.12 are prepared by ion beam sputtering deposition. The dot density, a function of deposition rate and Ge coverage, is observed to be limited mainly by the transformation from two-dimensional precursors to three-dimensional islands, and to be associated with the adatom behaviors of attachment and detachment from the islands. An unusual increasing temperature dependence of nanodot density is also revealed when a high ion energy is employed in sputtering deposition, and is shown to be related to the breaking down of the superstrained wetting layer. This result is attributed to the interaction between energetic atoms and the growth surface, which mediates the island nucleation.
基金the National Natural Science Foundation of China(No.60371046)
文摘Nanoscale thick amorphous Ni-Cr alloy thin films were fabricated by low-energy ion beam sputtering technology; then the as-deposited samples experienced rapid thermal process to realize the transformation from amorphous to crystalline state. The film thickness was measured with a-stylus surface profiler, the structure and the compositions of the films were confirmed by low angle X-ray diffraction and scanning auger electron microprobe respectively, and the surface topography was characterized by scanning electron microscope and scanning probe microscope. Electrical property of the films was measured by fourpoint probe. The experimental results illustrate that the combined processes of ion beam sputtering and rajid thermal process are effective for fabrication nanoscale Ni-Cr alloy thin film with good properties.
文摘Since the discovery of high T;super-conductor, much effort was made toits application. More and more evidencehas revealed that most promising fieldof high T;superconductor first to havesuccess must be the microelectronics andcomputer. Superconductor films for mi-croelectronic application are preparedby PVD method, such as electron beamevaporation, pulsed laser evaporation andmagnetron sputtering. In this paper, thepreliminary results of ion beam sputteringdeposition of YBaCuO film are reported
基金Jiangsu Province key laboratory of thin film with Grant No. K2021.
文摘Fe-N films were prepared on Si substrate by dual ion beam sputtering (DIBS). It is found that the crystal structure of the films varies from α-Fe, to ε-Fe2-3N, ε-Fe2-3N +γ-Fe4N, and finally γ'-Fe4N with the increase in substrate temperature (TS). The magnetic properties of the films were investigated by a vibrating sample magnetometer (VSM). The structure of the films is insensitive to the ratios of N2/Ar in main ion source(MIS), and is mainly influenced by the substrate temperature (Ts).
文摘The bonding and electronic structure of Cu/(0001)Al2O3 and Cu/(1120)Al2O3 interfaces has been studied experimentally using spatially-resolved transmission electron energy loss spectroscopy. The specimen were prepared by depositing Cu on single-crystal α-AI2O3 substrates, which have been Ar+-ion sputter-cleaned prior to the growth of Cu. For both orientations of the α-Al2O3 substrate, atomically abrupt interfaces formed as determined by high-resolution transmission electron microscopy. The investigations of the interfacial Cu-L2,3, Al-L2,3 and 0-K energy loss near-edge structures, which are proportional to the site- and angular-momentum-projected unoccupied density of states above the Fermi level, indicate the existence of metallic Cu-AI bonds at the Cu/AI2O3 interface independent of the substrate orientation.
文摘he present paper focuses on the modifying effects of ion beam mixing, ion im-planting and ion sputtering on hydrogen evolution electrodes. It was discovered thatthe four types of electrodes possessed excellent catalytic activity in acid or alkalinemedia and potential stability in long term electrolysis of water under high currentdensity. Their stability and applying life-span greatly surpass those of other elec-trodes activated by electrodepositing and other method. The effects of temperatureand roughness on function of electrodes were also examined. XPS and AES wereapplied to analyse the surface composition and bond states of the electrodes, andthe distribution of concentration varying with depth, and to explain the law of theexperiments .
文摘ZrO2 films on NaCl(100) substrate produced by oxygen ion bombardment and argon ion sputtering of Zr are analysed using TEM, XRD and XPS. The result of TEM shows that only cubic phase exists for the ZrO2 film produced by oxygen ion bombardment with 30μA/cm2 and 200eV, while the XRD result shows that there seems to exhibit a small quanitity of monoclinic phase apart from cubic one under the production condition of oxygen ion of 25μA/cm2, 100eV.
基金This work was financially supported by the National Natural Science Foundation (No.10574106), the Science & Technology Plan of Guangdong Province (No.2003C105005) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Chinese State Education Ministry (No.(2004)176).
文摘Cu2ZnSnS4 (CZTS) thin films were successfully prepared by sulfurization of ion bean sputtered precursors on soda-lime glass substrate. The single phase of stannite-type structure CZTS films were obtained as revealed in EDS and XRD analysis when the ratios of the constituents of CZTS thin films are close to stoichiometric by optimizing the conditions of precursor preparation and sulfurization. A low sheet resistivity as about 0.156 Ω·cm and a high absorption coefficient as 1×104 cm-1 were achieved in this method by Hall effect measurements and UV-VIS spectrophotometer. The optical band-gap energy of the CZTS sample is about 1.51 eV, which is very close to the optimum value for a solar-cell absorber.
基金supported by the National High-Tech Research and Development Program of China(No.2008AA031401)the National Natural Science Foundation of China (No.60771019)+2 种基金the Natural Science Foundation of Tianjin, China (No.08JCZD-JC17500)the StateKey Lab on Integrated Optoelectronics (No.2010KFB001)The Research Fund for the Doctoral Program of Higher Education of China (No.20100032120029)
文摘Vanadium dioxide thin films were fabricated through annealing vanadium oxide thin films deposited by dual ion beam sputtering. X-ray diffraction (XRD), atom force microscopy (AFM), and Fourier transform infrared spectrum (FTIR) were employed to measure the crystalline structure, surface morphology, and infrared optical transmittance. The phase transition properties were characterized by transmittance. The results show that the annealed vanadium oxide thin film is composed of monoclinic VO2, with preferred orientation of (011). The maximum of transmittance change is beyond 65% as the temperature increases from 20 to 80 C. The reversible changes in optical transmittance against temperature were observed. The change rate of transmittance at short wavelength is higher than that at long wavelength at the same temperature across semiconductor-metal phase transition. This phenomenon was discussed using diffraction effect.
基金supported by the National Natural Science Foundation of China (No. 50475057)the Tribology Science Fund of the State Key-laboratory of Tribology (No. Kf04.02)
文摘The principle of magnetron sputtering is introduced andthe balanced and unbalanced magnetrons are compared andthe necessity of unbalanced magnetrons is explained as well. Several recent developments in plasma magnetron sputtering, i.e., unbalanced magnetron sputtering, pulsed magnetron sputtering and ion assisted sputtering, are discussed. The recent developments of unbalanced magnetron systems and their incorporation with ion sources result in an understanding in growingimportance of the magnetron sputtering technology, which makes the technology an applicable deposition process for a variety of important films, such as wear-resistant films and decorative films.
基金Supported by the National Natural Science Foundation of China (10575078)
文摘Using ZnO buffer layers prepared by simply thermal oxidation of ion beam sputtered Zn films, highly oriented and uniformly aligned single-crystalline ZnO micropillars arrays have been synthesized by thermal evaporation of Zn powder with flee catalysts at low temperature of 430℃ The ZnO micropillars show sharp hexagonal umbrella-like tips with thin ZnO nanowire grown on the tips. The umbrella-like tips grow in a layer-by-layer mode along the direction of [001]. The growth mechanism has been discussed. The formation of the micropillars basically depends on the gradually decreasing Zn vapor pressure and subsequently cooling process. The photoluminescence (PL) spectrum indicates a moderately good crystal quality of the ZnO micropillars. Our results may reinforce the understanding of the formation mechanism of different ZnO nano/microstructures. This kind of complex microstructures may find potential applications in multifunctional microdevices, optoelectronic and field emission devices.
文摘Vanadium dioxide(VO 2)thin films are used for protection from high-energy laser hits due to their semiconductor-to-metal phase transition experienced during heating at temperature of approximately 68 ℃,which followed by a abrupt change of optical behavior, namely from transparent semiconductor state below 68 ℃ to highly reflective metallic state beyond 68 ℃.The preparation and properties of the films are described as well as the primary principle of the device for protection from high energy laser hits. An ion-beam-sputtering system is used to deposit VO 2 thin films.The technique is reactive ion beam sputtering of vanadium at temperature of 200 ℃ on Si, Ge and Si 3N 4 substrates in a well controlled atmosphere of argon with a partial pressure of O 2, followed by a post annealing at 400-550 ℃ with argon gas.The optical transmittance changes from 60% to 4% are obtained within the temperature range from 50 ℃ to 70 ℃. X-ray diffraction (XRD) shows that the films are of single-phase VO 2.
基金Funded by the National Natural Science Foundation of China(No.31300787)the National Natural Science Foundation of China China Academy of Engineering Physics(NSAF No.U1330113)+1 种基金the Overseas Famous Teacher Program of Chinese Education Ministry(MS2010XNJT070)the Qingmiao Plan of SWJTU 2015(No.A0920502051517-6)
文摘Ti-Cu films with different Cu concentrations were fabricated by high-power pulsed magnetron sputtering(HPPMS) to release copper ions and catalyze NO to improve the blood compatibility. The Cu concentrations of films were 25.7 at% and 68.8 at%. Pure Ti films were also fabricated. Copper release, catalytic release of nitric oxide(NO), and blood platelet adhesion of Ti-Cu films were studied. Ti-Cu films released copper ions in PBS solution and more Cu ions were released from films with 68.8 at% Cu. Ti-Cu films had excellent ability of catalytical decomposition of exogenous donor S-nitroso-N-acetyl-DL-penicillamine(SNAP) and as a result, nitric oxide(NO) was generated. The NO generation catalyzed by Ti-Cu films was significantly higher than that by pure Ti films. This was more eminent in the Ti-Cu films with 68.8 at% Cu. The platelet adhesion and activation of Ti-Cu films were significantly inhibited compared to that of pure Ti films in the presence of SNAP. The Ti-Cu film fabricated by HPPMS showed the ability of releasing Cu ions to catalyze SNAP to generate NO to inhibit platelet adhesion and activation.
基金Project supported by the National Natural Science Foundation of China(Grant No.41176156)
文摘The development of solution strategies for Zinc oxide (ZnO) quantum dots provides a pathway to utilizing ZnO nanocrystal thin films in optoelectronic devices. In this work, quasi-spherical ZnO quantum dots with a diameter of 5 nm are synthesized by using ethanol as a solvent. ZnO nanocrystal thin film is obtained by spin-coating ZnO quantum dots on a Au interdigital electrode (IDE)/AI203 substrate and annealing at different temperatures in order to yield the optimal pho- tosensitive on/off ratio of ZnO. For further enhancing the responsivity, ion sputtering is utilized to deposit Pt nanoparticles on the surface of ZnO nanocrystal thin film, the responsivity of the ZnO/Pt bilayer nanostructure increases from 0.07 A/W to 54 A/W, showing that the metal/inorganic nanocrystal bilayer nanostructure can be used to improve the performance of optoelectronic devices. The excellent properties of ZnO/Pt bilayer nanostructure have important applications in future electronic and optoelectronic devices.
基金Funded by the National Natural Science Foundation of China (No.51075237)the National Basic Research Program of China (No.2009CB724402)+3 种基金the Taishan Scholar Program of Shandong Provincethe Outstanding Young Scholar Science Foundation of Shandong (No.JQ200917)the National Natural Science Foundation of Shandong (No.ZR2010EZ002)National High Technology Research and Development Program (No.2009AA044303)
文摘MoS2/Zr composite films were deposited on the cemented carbide YT14 (WC+14%TiC+6%Co) by medium-frequency magnetron sputtered and coupled with multi-arc ion plated techniques.The influence of negative bias voltage on the composite film properties,including adhesion strength,micro-hardness,thickness and tribological properties were investigated.The results showed that proper negative bias voltage could significantly improve the mechanical and tribological properties of composite films.The effects of negative bias voltage on film properties were also put forward.The optimal negative bias voltage was -200 V under this experiment conditions.The obtained composite films were dense,the adhesion strength was about 60 N,the thickness was about 2.4 μm,and the micro-hardness was about 9.0 GPa.The friction coefficient and wear rate was 0.12 and 2.1×10-7 cm3/N·m respectively after 60 m sliding operation against hardened steel under a load of 20 N and a sliding speed of 200 rev·min-1.
文摘The thin film gas sensors of bismuth iron molybdate were prepared by ion beam sputtering technique. The prototype gas sensors studied have high sensitivity and selectivity to reducing gases, such as ethanol vapor, show a long term stability of response under most operating conditions and insensitivity to atmospheric humidity, and respond quickly comparing to traditional sintered gas sensors. The crystallographic structure and phase composition of these thin films were investigated with XRD, XPS and SEM techniques.
基金This work was supported by the Deutsche Forschungsgemeinschaft(DFG)within the framework of the Cluster of Excellence QUEST Project 201.
文摘In the present state of the art,ion beam sputtering is used to produce low-loss dielectric optics.During the manufacturing of a dielectric layer stack,the deposition material must be changed,which requires rapid mechanical movement of vacuum components.These mechanical components can be regarded as a risk factor for contamination during the coating process,which limits the quality of high-end laser components.To minimize the particle contamination,we present a novel deposition concept that does not require movable components to change the coating material during the coating process.A magnetic field guiding technique has been developed,which enables the tuning of the refractive index in the layer structure by sputtering mixtures with varying compositions of two materials using a single-ion source.The versatility of this new concept is demonstrated for a highreflection mirror.
基金supported by the National Natural Science Foundation of China(Grant Nos.61335010,61275145,61275200&61275145)the National Hi-Tech Research and Development Program of China("863"Project)(Grant No.2013AA032204)+1 种基金the Brain Vanguard Technology Crossover Cooperation Projects of Chinese Academy of Sciences(GrantNo.KJZD-EW-L11-01)the Recruitment Program for Young Professionals
文摘Electro-deposition, electrical activation, thermal oxidation, and reactive ion sputtering are the four primary methods to fabricate iridium oxide film. Among these methods, reactive ion sputtering is a commonly used method in standard micro-fabrication processes. In different sputtering conditions, the component, texture, and electrochemistry character of iridium oxide varies considerably. To fabricate the iridium oxide film compatible with the wafer-level processing of neural electrodes, the quality of iridium oxide film must be able to withstand the mechanical and chemical impact of post-processing, and simultaneously achieve good performance as a neural electrode. In this study, parameters of sputtering were researched and developed to achieve a balance between mechanical stability and good electrochemical characteristics of iridium oxide film on electrode. Iridium oxide fabricating process combined with fabrication flow of silicon electrodes, at wafer-level, is introduced to produce silicon based planar iridium oxide neural electrodes. Compared with bare gold electrodes, iridium oxide electrodes fabricated with this method exhibit particularly good electrochemical stability, low impedance of 386 kW at 1 kH z, high safe charge storage capacity of 3.2 m C/cm^2, and good impedance consistency of less than 25% fluctuation.
基金Supported by the National Natural Science Foundation of China (Grant No. 10574106)the Planned Science and Technology Project of Guangdong Province (Grant No.2003C05005)the Natural Science Fund of Zhanjiang Normal Univer-sity (Grant No.200801)
文摘Cu2ZnSnS4 (CZTS) thin films were successfully fabricated on glass substrates by sulfurizing Cu-Sn-Zn multilayer precursors, which were deposited by ion beam sputtering and RF magnetron sputtering, respectively. The structural, electrical and optical properties of the prepared films under various processing conditions were investigated in detail. Results showed that the as-deposited CZTS thin films with the precursors by both ion beam sputtering and RF magnetron sputtering have a composition near stoichiometric. The crystallization of the samples, however, has a strong dependence on the atomic percent of constituents of the prepared CZTS films. A single phase stannite-type structure CZTS with a large absorption coefficient of 104/cm in the visible range could be obtained after sulfurization at 520℃ for 2 h. The samples relative to the RF magnetron sputtering showed a low resistivity of 0.073 ?cm and band gap energy of about 1.53 eV. The samples relative to the ion beam sputtering exhibited a resistivity of 0.36 Ωcm and the band gap energy is about 1.51 eV.