期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Assembly of charged aerosols on non-conducting substrates via ion-assisted aerosol lithography (IAAL) 被引量:1
1
作者 Seunghyon Kang Wooik Jung +2 位作者 Dae Seong Kim Sei Jin Park Mansoo Choi 《Particuology》 SCIE EI CAS CSCD 2017年第4期17-23,共7页
The development of ion-assisted aerosol lithography (IAAL) has enabled fabrication of complex three- dimensional nanoparticle (NP) structures on conducting substrates. In this work, the applicability of the IAAL t... The development of ion-assisted aerosol lithography (IAAL) has enabled fabrication of complex three- dimensional nanoparticle (NP) structures on conducting substrates. In this work, the applicability of the IAAL technique was investigated on non-conducting substrates. The NP structure growth process on a non-conducting substrate was found to self-terminate and the structures subsequently repel incoming charged NPs and scatter them away. Electric field calculations supported the experimental findings and confirmed that the electric field distortions owing to charge build-up within the structures prevented additional NP deposition thereon. To regulate the charge build-up without compromising the number of NPs available for assembly, a corona discharger and an ion trap were implemented. By varying the number of ions available in the assembly process, an optimum level of ion injection was found that allowed for a prolonged (〉120 rain) assembly of NP structures on non-conducting substrates without the unwanted scattering of NPs. 展开更多
关键词 Nanoparticle assembly Non-conducting substrate ion-assisted aerosol lithography Ion trap
原文传递
Antioxidative MXene@GA‑Decorated Textile Assisted by Metal Ion for Efficient Electromagnetic Interference Shielding,Dual‑Driven Heating,and Infrared Thermal Camouflage 被引量:1
2
作者 Biaobiao Yan Xueming Bao +6 位作者 Yilei Gao Man Zhou Yuanyuan Yu Bo Xu Li Cui Qiang Wang Ping Wang 《Advanced Fiber Materials》 SCIE EI CAS 2023年第6期2080-2098,共19页
Two-dimensional transition metal carbide/nitride(MXene)-based textiles have been developed in many fields;however,the high sensitivity to oxidation and weak interfacial bonding hinder their applications.Herein,we pres... Two-dimensional transition metal carbide/nitride(MXene)-based textiles have been developed in many fields;however,the high sensitivity to oxidation and weak interfacial bonding hinder their applications.Herein,we present a strategy for the preparation of a highly antioxidative MXene@gallic acid(MXene@GA,MG)hybrid dispersion,and further covalently grafted it onto carboxylated cotton fabric through interaction with metal ions(Fe^(3+))for fabricating wearable multifunctional textiles.Due to the cross-linking effect of Fe^(3+)and the remarkable antioxidant activity of natural polyphenol GA,the MG coatings firmly adhere to the textile surfaces and can withstand conventional washing,exhibiting favorable service stability and potential application prospects.Moreover,the obtained MG-decorated textile has the inherent characteristics of good breathability,moisture permeability,flexibility,and biocompatibility of the original fabric,which are conducive to the wearability of smart devices.Furthermore,by utilizing the outstanding conductivity(~330 S/m)and photothermal convertibility of the MG coating,the functional textile achieves high electromagnetic interference(EMI)shielding efficiency(~35 dB),excellent dual-driven(Joule and solar)heating warmth retention,and infrared thermal camouflage.Due to the green and scalable preparation process,favorable durability,excellent comfort,and multifunctionality,the MG-decorated textiles are anticipated to be promising candidates for the next generation of smart wearable personal protective clothing. 展开更多
关键词 Antioxidative MXene@GA Metal ion-assisted deposition Durable stability Multifunctional protective textile
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部