Boron−nitrogen doped multiple resonance(BN-MR)emitters,characterized by B−N covalent bonds,offer distinctive advantages as pivotal building blocks for facile access to novel MR emitters featuring narrowband spectra an...Boron−nitrogen doped multiple resonance(BN-MR)emitters,characterized by B−N covalent bonds,offer distinctive advantages as pivotal building blocks for facile access to novel MR emitters featuring narrowband spectra and high efficiency.However,there remains a scarcity of exploration concerning synthetic methods and structural derivations to expand the library of novel BN-MR emitters.Herein,we present the synthesis of a BN-MR emitter,tCz[B−N]N,through a one-pot borylation reaction directed by the amine group,achieving an impressive yield of 94%.The emitter is decorated by incorporating two 3,6-di-tbutylcarbazole(tCz)units into a B−N covalent bond doped BN-MR parent molecule via para-C−π−D and para-N−π−D conjugations.This peripheral decoration strategy enhances the reverse intersystem crossing process and shifts the emission band towards the pure green region,peaking at 526 nm with a narrowband full-width at half maximum(FWHM)of 41 nm.Consequently,organic light emitting diodes(OLEDs)employing this emitter achieved a maximum external quantum efficiency(EQEmax)value of 27.7%,with minimal efficiency roll-off.Even at a practical luminance of 1000 cd·m^(−2),the device maintains a high EQE value of 24.6%.展开更多
Li metal anode holds great promise to realize high-energy battery systems.However,the safety issue and limited lifetime caused by the uncontrollable growth of Li dendrites hinder its commercial application.Herein,an i...Li metal anode holds great promise to realize high-energy battery systems.However,the safety issue and limited lifetime caused by the uncontrollable growth of Li dendrites hinder its commercial application.Herein,an interlayer-bridged 3D lithiophilic rGO-Ag-S-CNT composite is proposed to guide uniform and stable Li plating/stripping.The 3D lithiophilic rGO-Ag-S-CNT host is fabricated by incorporating Ag-modified reduced graphene oxide(rGO)with S-doped carbon nanotube(CNT),where the rGO and CNT are closely connected via robust Ag-S covalent bond.This strong Ag-S bond could enhance the structural stability and electrical connection between rGO and CNT,significantly improving the electrochemical kinetics and uniformity of current distribution.Moreover,density functional theory calculation indicates that the introduction of Ag-S bond could further boost the binding energy between Ag and Li,which promotes homogeneous Li nucleation and growth.Consequently,the rGO-Ag-S-CNT-based anode achieves a lower overpotential(7.3 mV at 0.5 mA cm^(−2)),higher Coulombic efficiency(98.1%at 0.5 mA cm^(−2)),and superior long cycling performance(over 500 cycles at 2 mA cm−2)as compared with the rGO-Ag-CNT-and rGO-CNT-based anodes.This work provides a universal avenue and guidance to build a robust Li metal host via constructing a strong covalent bond,effectively suppressing the Li dendrites growth to prompt the development of Li metal battery.展开更多
Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, ...Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, yet no theory to unify conceptions. The present paper describes methods to derive bonds and charge location in double-face-centered cubic crystals with 4 and 6 atoms per unit cell using two novel rules introduced in earlier works: the even-odd and the isoelectronicity rules. Both of these rules were previously applied to ions, molecules and some solids, and the even-odd rule was also tested on two covalent crystal structures: centered-cubic and single-face-centered cubic crystals. In the present study, the diamond-like structure was subjected to the isoelectronicity rule in order to derive Zinc-blende structures. Rock-salt-like crystals were derived from each other using both rules. These structures represent together more than 230 different crystals. Findings for these structures are threefold: both rules describe a very sure method to obtain valid single covalent-bonded structures;single covalent structures can be used in every case instead of the classical ionic model;covalent bonds and charges positions do not have any relation with the valence number given in the periodic table.展开更多
Collagen powder hydrolysates were reacted with a solution of commercial mimosa bark tannin extract.The mixture was prepared at ambient temperature and prepared at 80°C to determine what reactions,if any,did occur...Collagen powder hydrolysates were reacted with a solution of commercial mimosa bark tannin extract.The mixture was prepared at ambient temperature and prepared at 80°C to determine what reactions,if any,did occur between the collagen protein through its amino acids and the polyphenolic condensed tannin.The reaction products obtained were analyzed by matrix assisted laser desorption ionization time-of-flight(MALDI ToF)mass spectrometry.Reactions between the two materials did appear to occur,with the formation of a relatively small proportion of covalent and ionic linkages at ambient temperature but a considerable proportion of covalent linkages tannin-protein amino acids and the disappearance of ionic bonds.The linkages between the two materials appeared to be by amination of the phenolic–OHs of the tannin by the amino groups of the non-skeletal side chains of arginine,and by esterification by the–COOH groups of glutamic and aspartic acid of the aliphatic alcohol-OH on the C3 site of the flavonoid units heterocycle of the tannin.The proportion of covalent linkages increases markedly and predominate with increasing temperatures.This tightening of the tannin-protein covalent network formed may be an additional contributing factor both to leather wear resistance and performance as well to leather shrinking when this is subjected to excessive temperatures.展开更多
Focusing on the use of imidazolium ionic liquids and quaternary ammonium salts-based deep eutectic solvents for the separation of phenols and nitrogen-containing heteroaromatics,the role of heteroaromatics as specific...Focusing on the use of imidazolium ionic liquids and quaternary ammonium salts-based deep eutectic solvents for the separation of phenols and nitrogen-containing heteroaromatics,the role of heteroaromatics as specific sites for hydrogen bond-based separation has been investigated.These environmentally friendly solvents are known for their ability to form hydrogen bonds with heteroatoms,a key aspect in separation processes.We quantified the hydrogen bond interaction energy to reach the threshold energy for efficient O-and N-heteroaromatics separation.This article provides an in-depth study of the structural nuances of different hydrogen bonding sites and their affinity properties while conducting a comparative evaluation of the separation efficiency of ionic liquids and deep eutectic solvents from a thermodynamic perspective.Results showed that phenols with dual hydrogen bonding recognition sites were easier to separate than nitrogen-containing heteroaromatics.Imidazolium ionic liquids were more suitable for the extraction of nonbasic nitrogen-containing heteroaromatics,and quaternary ammonium salts-based deep eutectic solvents are more effective for phenols and basic nitrogen-containing heteroaromatics,which was confirmed by Fourier transform infrared spectroscopy and empirical tests.Therefore,this study provides a theoretical basis for the strategy design and selection of extractants for the efficient separation of O-and N-containing aromatic compounds.展开更多
The use of lithium-sulfur batteries under high sulfur loading and low electrolyte concentrations is severely restricted by the detrimental shuttling behavior of polysulfides and the sluggish kinetics in redox processe...The use of lithium-sulfur batteries under high sulfur loading and low electrolyte concentrations is severely restricted by the detrimental shuttling behavior of polysulfides and the sluggish kinetics in redox processes.Two-dimensional(2D)few layered black phosphorus with fully exposed atoms and high sulfur affinity can be potential lithium-sulfur battery electrocatalysts,which,however,have limitations of restricted catalytic activity and poor electrochemical/chemical stability.To resolve these issues,we developed a multifunctional metal-free catalyst by covalently bonding few layered black phosphorus nanosheets with nitrogen-doped carbon-coated multiwalled carbon nanotubes(denoted c-FBP-NC).The experimental characterizations and theoretical calculations show that the formed polarized P-N covalent bonds in c-FBP-NC can efficiently regulate electron transfer from NC to FBP and significantly promote the capture and catalysis of lithium polysulfides,thus alleviating the shuttle effect.Meanwhile,the robust 1D-2D interwoven structure with large surface area and high porosity allows strong physical confinement and fast mass transfer.Impressively,with c-FBP-NC as the sulfur host,the battery shows a high areal capacity of 7.69 mAh cm^(−2) under high sulfur loading of 8.74 mg cm^(−2) and a low electrolyte/sulfur ratio of 5.7μL mg^(−1).Moreover,the assembled pouch cell with sulfur loading of 4 mg cm^(−2) and an electrolyte/sulfur ratio of 3.5μL mg^(−1) shows good rate capability and outstanding cyclability.This work proposes an interfacial and electronic structure engineering strategy for fast and durable sulfur electrochemistry,demonstrating great potential in lithium-sulfur batteries.展开更多
We study the friction properties of interlayer bonded bilayer graphene by simulating the movement of a slider on the surface of bilayer graphene using molecular dynamics.The results show that the presence of the inter...We study the friction properties of interlayer bonded bilayer graphene by simulating the movement of a slider on the surface of bilayer graphene using molecular dynamics.The results show that the presence of the interlayer covalent bonds due to the local sp^(3) hybridization of carbon atoms in the bilayer graphene seriously reduces the frictional coefficient of the bilayer graphene surface to 30%,depending on the coverage of interlayer sp^(3) bonds and normal loads.For a certain coverage of interlayer sp3bonds,when the normal load of the slider reaches a certain value,the surface of this interlayer bonded bilayer graphene will lose the friction reduction effect on the slider.Our findings provide guidance for the regulation and manipulation of the frictional properties of bilayer graphene surfaces through interlayer covalent bonds,which may be useful for applications of friction related graphene based nanodevices.展开更多
Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen ...Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen evolution reaction(HER).In this study,the intrinsically tunable internal bond electric field(IBEF)at the imine bonds of COFs was manipulated to cooperate with the internal molecular electric field(IMEF)induced by the donor-acceptor(D-A)structure for an efficient HER.The aligned orientation of IBEF and IMEF resulted in a remarkable H_(2) evolution rate of 57.3 mmol·g^(-1)·h^(-1)on TNCA,which was approximately 520 times higher than that of TCNA(0.11 mmol·g^(-1)·h^(-1))with the opposing electric field orientation.The superposition of the dual electric fields enables the IBEF to function as an accelerating field for electron transfer,kinetically facilitat-ing the migration of photogenerated electrons from D to A.Furthermore,theoretical calculations indicate that the inhomogeneous charge distribution at the C and N atoms in TNCA not only pro-vides a strong driving force for carrier transfer but also effectively hinders the return of free elec-trons to the valence band,improving the utilization of photoelectrons.This strategy of fabricating dual electric fields in COFs offers a novel approach to designing photocatalysts for clean energy synthesis.展开更多
In organic chemistry, as defined by Abegg, Kossel, Lewis and Langmuir, compounds are normally represented using structural formulas called Lewis structures. In these structures, the octet rule is used to define the nu...In organic chemistry, as defined by Abegg, Kossel, Lewis and Langmuir, compounds are normally represented using structural formulas called Lewis structures. In these structures, the octet rule is used to define the number of covalent bonds that each atom forms with its neighbors and multiple bonds are frequent. Lewis’ octet rule has unfortunately shown limitations very early when applied to non-organic compounds: most of them remain incompatible with the “rule of eight” and location of charges is uncertain. In an attempt to unify structural formulas of octet and non-octet molecules or single-charge ions, an even-odd rule was recently proposed, together with a procedure to locate charge precisely. This even-odd rule has introduced a charge-dependent effective-valence number calculated for each atom. With this number and the number of covalent bonds of each element, two even numbers are calculated. These numbers are both used to understand and draw structuralformulas of single-covalent-bonded compounds. In the present paper, a procedure is proposed to adjust structural formulas of compounds that are commonly represented with multiple bonds. In order to keep them compatible with the even-odd rule, they will be represented using only single covalent bonds. The procedure will then describe the consequences of bond simplification on charges locations. The newly obtained representations are compared to their conventional structural formulas, i.e. single-bond representation vs. multiple-bond structures. Throughout the comparison process, charges are precisely located and assigned to specific atoms. After discussion of particular cases of compounds, the paper finally concludes that a rule limiting representations of multiplecovalent bonds to single covalent bonds, seems to be suitable for numerous known compounds.展开更多
A crystal is a highly organized arrangement of atoms in a solid, wherein a unit cell is periodically repeated to form the crystal pattern. A unit cell is composed of atoms that are connected to some of their first nei...A crystal is a highly organized arrangement of atoms in a solid, wherein a unit cell is periodically repeated to form the crystal pattern. A unit cell is composed of atoms that are connected to some of their first neighbors by chemical bonds. A recent rule, entitled the even-odd rule, introduced a new way to calculate the number of covalent bonds around an atom. It states that around an uncharged atom, the number of bonds and the number of electrons have the same parity. In the case of a charged atom on the contrary, both numbers have different parity. The aim of the present paper is to challenge the even-odd rule on chemical bonds in well-known crystal structures. According to the rule, atoms are supposed to be bonded exclusively through single-covalent bonds. A distinctive criterion, only applicable to crystals, states that atoms cannot build more than 8 chemical bonds, as opposed to the classical model, where each atom in a crystal is connected to every first neighbor without limitation. Electrical charges can be assigned to specific atoms in order to compensate for extra or missing bonds. More specifically the article considers di-atomic body-centered-cubic, tetra-atomic and dodeca-atomic single-face-centered-cubic crystals. In body-centered crystals, atoms are interconnected by 8 covalent bonds. In face-centered crystal, the unit cell contains 4 or 12 atoms. For di-element crystals, the total number of bonds for both elements is found to be identical. The neutrality of the unit cell is obtained with an opposite charge on the nearest or second-nearest neighbor. To conclude, the even-odd rule is applicable to a wide number of compounds in known cubic structures and the number of chemical bonds per atom is not related to the valence of the elements in the periodic table.展开更多
Ions or molecules are said to be isoelectronic if they are composed of different elements but have the same number of electrons, the same number of covalent bonds and the same structure. This criterion is unfortunatel...Ions or molecules are said to be isoelectronic if they are composed of different elements but have the same number of electrons, the same number of covalent bonds and the same structure. This criterion is unfortunately not sufficient to ensure that a chemical structure is a valid chemical compound. In a previous article, a procedure has been described to draw 2D valid structural formulas: the even-odd rule. This rule has been applied first to single-bonded molecules then to single-charged single-bonded ions. It covers hypovalent, hypervalent or classic Lewis’ octet compounds. The funding principle of the even-odd rule is that each atom of the compound possesses an outer-shell filled only with pairs of electrons. The application of this rule guarantees validity of any single-covalent-bond chemical structure. In the present paper, this even-odd rule and its electron-pair criterion are checked for coherence with an effective-valence isoelectronic rule using numerous known compounds having single-covalent-bond connections. The test addresses Lewis’ octet ions or molecules as well as hypovalent and hypervalent compounds. The article concludes that the even-odd rule and the effective-valence isoelectronicity rule are coherent for known single-covalent-bond chemical compounds.展开更多
A decrease in temperature will eventually turn a gas into liquid and then into a solid. Each of these phase change shows a higher degree in cohesion of molecules. While it is usually admitted that molecules in solids ...A decrease in temperature will eventually turn a gas into liquid and then into a solid. Each of these phase change shows a higher degree in cohesion of molecules. While it is usually admitted that molecules in solids form additional connections, the cohesion of molecules in liquids is usually explained by changes in kinetics of molecules. Given that the density of a solid is nearly the same than that of a liquid, the present paper assumes a different stand and considers that connections between molecules must be similar in liquids and in solids. The difference between gas, in which molecules are entirely loose, and liquid, is therefore the presence of an additional connection between gaseous molecules. This paper describes how and where these connections are built with the help of a few rules and a “specific periodic table for liquids”. The coherence of this approach is reinforced by its capacity to explain phase change of forty well-known molecules containing inorganic and organic elements.展开更多
Building on the recent success of the even-odd rule, the present paper explores its implications by studying the very specific case of OXO compounds. These compounds are usually represented with double bonds linking t...Building on the recent success of the even-odd rule, the present paper explores its implications by studying the very specific case of OXO compounds. These compounds are usually represented with double bonds linking two oxygen atoms to a central atom—as in carbon dioxyde—yet can sometimes be drawn in a triangular structure, such as in calcium dioxyde. Measurement data moreover indicate that most OXO compounds have an angle around 120° between oxygen atoms, although that seems incompatible with triangular representations. The aim here is to unify these commonly admitted representations by linking oxygen atoms through a single bond that is longer than usual covalent bonds: an “elongated bond”. This elongated bond has the interesting effect of suppressing the need for double bonds between oxygen and the central atom. The elongated bond concept is applied to about a hundred of molecules and ions and methodically compared to classical representations. It is shown that this new representation, associated to the even-odd rule, is compatible with all studied compounds and can be used in place of their classical drawings. Its usage greatly simplifies complex concepts like resonance and separated charges in gases. Elongated bonds are also shown to be practicable with the isoelectronic rule as well as isomers, and throughout chemical reactions. This study of an especially long and wide angle bond confirms the versatility of the even-odd rule: it is not limited to compounds with short covalent bonds and can include OO covalent bond lengths of more than 200 pm and with OXO angles above 90°.展开更多
A new complex, [Ni2(L)4(H2O)8](1, L1 = 4-(1H-imidazol-4-yl)benzoic acid), has been hydrothermally prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and PXRD. C...A new complex, [Ni2(L)4(H2O)8](1, L1 = 4-(1H-imidazol-4-yl)benzoic acid), has been hydrothermally prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and PXRD. Complex 1 crystallizes in monoclinic, space group P21/c with α = 22.281(2), b = 7.3959(7), c = 24.978(3) ?, β = 90.876(10), V = 4115.6(7) ?3, Z = 8, C20H22N4O8Ni, Mr = 505.13, Dc = 1.630 g/cm3, μ = 1.001 mm-1, S = 1.080, F(000) = 2096, the final R = 0.452 and wR = 0.1152 for 9380 observed reflections (I 〉 2σ(I)). The result of X-ray diffraction analysis revealed three different kinds of Ni(II) centre mononuclear molecules in the asymmetric unit. The independent mononuclear units are bridged to form a three-dimensional supramolecular polymer by extensive hydrogen bonds and C–H… non-covalent bonding interactions.展开更多
When writing equations of chemical dissociation, students and scholars are taught two fundamental rules to balance the equation. On both sides of the equation, the types of elements and their quantity are conserved, a...When writing equations of chemical dissociation, students and scholars are taught two fundamental rules to balance the equation. On both sides of the equation, the types of elements and their quantity are conserved, as well as the global electrical charge. This paper introduces additional methods during dissociation of gaseous compounds, to precisely describe how electrical charges locally move and how bonding structures are modified. Specific rules revolving around electrons pairs displacements are developed and applied to about 150 dissociations of small gaseous molecules using atoms from the three first rows of the periodic table. Results obtained tend to demonstrate the relevance of these tools for chemists.展开更多
A three-dimensional complex [Cu(3-ampy)(HEO)4](SO4)·(H2O) (3-ampy = 3-amino- pyridine) has been synthesized. Crystallographic data: C5H16CuN2O9S, Mr = 343.80, triclinic, space group P1, a = 7.675(2),...A three-dimensional complex [Cu(3-ampy)(HEO)4](SO4)·(H2O) (3-ampy = 3-amino- pyridine) has been synthesized. Crystallographic data: C5H16CuN2O9S, Mr = 343.80, triclinic, space group P1, a = 7.675(2), b = 8.225(3), c = 10.845(3)A, α= 86.996(4), β = 76.292(4), γ= 68.890(4)°, V = 620.0(3)A^3, Z = 2, Dc = 1.841 g/cm^3, F(000) = 354 and μ = 1.971 mm^-1. The structure was refined to R = 0.0269 and wR = 0.0659 for 1838 observed reflections (I 〉 2a(/)). The structure consists of [Cu(3-ampy)(H2O)4]^2+ cations, SO4^2- anions and lattice water molecules. 3-Ampy acting as a bidentate bridging ligand generates a 1D covalent chain. A supramolecular 2D framework is formed through π-π stacking of pyridine rings. The lattice water molecules and SO4^2- anions are located between the adjacent 2D frameworks. The hydrogen bonding interactions from lattice water molecules and SO4^2- anions to coordinate water extend the 2D framework into a 3D network.展开更多
Novel hybrid materials containing covalently bonded Terbium-benzoic acid complex in mesoporous silicaSBA-15 (denoted as Tb-SBA-15 ) were prepared via co-condensation of tetrethoxysilane (TEOS) and N-(4-benzoicacid-yl)...Novel hybrid materials containing covalently bonded Terbium-benzoic acid complex in mesoporous silicaSBA-15 (denoted as Tb-SBA-15 ) were prepared via co-condensation of tetrethoxysilane (TEOS) and N-(4-benzoicacid-yl), N'-(propyltriethoxysilyl) urea (denoted as PABI).XRD, FTIR and luminescence spectroscopy were employed to characterize Tb-SBA-15.When monitored by the ligand absorption wavelength (270 nm), Tb-SBA-15 displays the emission of Tb3+ (5D4→7Fj (j = 6, 5, 4, 3 ) transition) due to the energy transfer from the ligands to Tb3+.展开更多
With local realism quantum mechanics established, we can simply describe an extranuclear electron as a large-scale elastic ring with an elastic phase trajectory. Several small molecules can thus be strictly calculated...With local realism quantum mechanics established, we can simply describe an extranuclear electron as a large-scale elastic ring with an elastic phase trajectory. Several small molecules can thus be strictly calculated through the logical method of establishing an accurate mechanical equilibrium equation describing the molecular structure, then solving the strict solutions of this mechanical equation and the corresponding wave equation. The results (bond length and dissociation energy) are in good agreement with observed results—i.e. if it is only coincidence, there should not be such a high probability of agreement between calculated and observed results. The method of local realism quantum mechanics is no longer the semi-empirical method. The method to calculate the electron pairing energy uses a linear regression of the ionization energy obtained through experiment. Nonetheless, it is exciting that there are diatomic molecules such as Na2, K2 and asymmetric HF molecules that possess a non-zero non-bonding electron number in the calculation examples. Moreover, the molecular structures are very intuitive, and the calculation method is much simpler than existing methods.展开更多
The EPR parameters of trivalent Er(3+) ions doped in hexagonal Ga N crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be...The EPR parameters of trivalent Er(3+) ions doped in hexagonal Ga N crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be derived from the Kramers doublet Γ6. The EPR g-factors may be ascribed to the stronger covalent bonding and nephelauxetic effects compared with other rare-earth doped complexes, as a result of the mismatch of ionic radii of the impurity Er(3+)ion and the replaced Ga(3+) ion apart from the intrinsic covalency of host Ga N. Furthermore, the J–J mixing effects on the EPR parameters from the high-lying manifolds have been evaluated. It is found that the dominant J–J mixing contribution is from the manifold 2K(15/2), which accounts for about 2.5%. The next important J–J contribution arises from the crystal–field mixture between the ground state 4I(15/2) and the first excited state4I(13/2), and is usually less than 0.2%. The contributions from the rest states may be ignored.展开更多
The Paulie’s principle is used for development of the orbital-free (OF) version of the density functional theory. On the example of the three-atomic clusters, Al<sub>3</sub>, Si<sub>3</sub>, a...The Paulie’s principle is used for development of the orbital-free (OF) version of the density functional theory. On the example of the three-atomic clusters, Al<sub>3</sub>, Si<sub>3</sub>, and C<sub>3</sub>, it is shown that the OF approach may lead to equilibrium configurations of atomic systems with both the metallic and covalent bonding. The equilibrium interatomic distances, interbonding angles and binding energies are found in good accordance with the known data. Results will be useful for developing of theoretical study of huge molecules and nanoparticles.展开更多
基金financial support from the National Natural Science Foundation of China(Nos.52303253 and 52273198)Yunnan Fundamental Research Project(No.202301BF070001-008)the Yunling Scholar Project of"Yunnan Revitalization Talent Support Program".
文摘Boron−nitrogen doped multiple resonance(BN-MR)emitters,characterized by B−N covalent bonds,offer distinctive advantages as pivotal building blocks for facile access to novel MR emitters featuring narrowband spectra and high efficiency.However,there remains a scarcity of exploration concerning synthetic methods and structural derivations to expand the library of novel BN-MR emitters.Herein,we present the synthesis of a BN-MR emitter,tCz[B−N]N,through a one-pot borylation reaction directed by the amine group,achieving an impressive yield of 94%.The emitter is decorated by incorporating two 3,6-di-tbutylcarbazole(tCz)units into a B−N covalent bond doped BN-MR parent molecule via para-C−π−D and para-N−π−D conjugations.This peripheral decoration strategy enhances the reverse intersystem crossing process and shifts the emission band towards the pure green region,peaking at 526 nm with a narrowband full-width at half maximum(FWHM)of 41 nm.Consequently,organic light emitting diodes(OLEDs)employing this emitter achieved a maximum external quantum efficiency(EQEmax)value of 27.7%,with minimal efficiency roll-off.Even at a practical luminance of 1000 cd·m^(−2),the device maintains a high EQE value of 24.6%.
基金This work is supported by Singapore Ministry of Education academic research grant Tier 2 (MOE2019-T2-1-181).
文摘Li metal anode holds great promise to realize high-energy battery systems.However,the safety issue and limited lifetime caused by the uncontrollable growth of Li dendrites hinder its commercial application.Herein,an interlayer-bridged 3D lithiophilic rGO-Ag-S-CNT composite is proposed to guide uniform and stable Li plating/stripping.The 3D lithiophilic rGO-Ag-S-CNT host is fabricated by incorporating Ag-modified reduced graphene oxide(rGO)with S-doped carbon nanotube(CNT),where the rGO and CNT are closely connected via robust Ag-S covalent bond.This strong Ag-S bond could enhance the structural stability and electrical connection between rGO and CNT,significantly improving the electrochemical kinetics and uniformity of current distribution.Moreover,density functional theory calculation indicates that the introduction of Ag-S bond could further boost the binding energy between Ag and Li,which promotes homogeneous Li nucleation and growth.Consequently,the rGO-Ag-S-CNT-based anode achieves a lower overpotential(7.3 mV at 0.5 mA cm^(−2)),higher Coulombic efficiency(98.1%at 0.5 mA cm^(−2)),and superior long cycling performance(over 500 cycles at 2 mA cm−2)as compared with the rGO-Ag-CNT-and rGO-CNT-based anodes.This work provides a universal avenue and guidance to build a robust Li metal host via constructing a strong covalent bond,effectively suppressing the Li dendrites growth to prompt the development of Li metal battery.
文摘Although atom configuration in crystals is precisely known thanks to imaging techniques, there is no experimental way to know the exact location of bonds or charges. Many different representations have been proposed, yet no theory to unify conceptions. The present paper describes methods to derive bonds and charge location in double-face-centered cubic crystals with 4 and 6 atoms per unit cell using two novel rules introduced in earlier works: the even-odd and the isoelectronicity rules. Both of these rules were previously applied to ions, molecules and some solids, and the even-odd rule was also tested on two covalent crystal structures: centered-cubic and single-face-centered cubic crystals. In the present study, the diamond-like structure was subjected to the isoelectronicity rule in order to derive Zinc-blende structures. Rock-salt-like crystals were derived from each other using both rules. These structures represent together more than 230 different crystals. Findings for these structures are threefold: both rules describe a very sure method to obtain valid single covalent-bonded structures;single covalent structures can be used in every case instead of the classical ionic model;covalent bonds and charges positions do not have any relation with the valence number given in the periodic table.
文摘Collagen powder hydrolysates were reacted with a solution of commercial mimosa bark tannin extract.The mixture was prepared at ambient temperature and prepared at 80°C to determine what reactions,if any,did occur between the collagen protein through its amino acids and the polyphenolic condensed tannin.The reaction products obtained were analyzed by matrix assisted laser desorption ionization time-of-flight(MALDI ToF)mass spectrometry.Reactions between the two materials did appear to occur,with the formation of a relatively small proportion of covalent and ionic linkages at ambient temperature but a considerable proportion of covalent linkages tannin-protein amino acids and the disappearance of ionic bonds.The linkages between the two materials appeared to be by amination of the phenolic–OHs of the tannin by the amino groups of the non-skeletal side chains of arginine,and by esterification by the–COOH groups of glutamic and aspartic acid of the aliphatic alcohol-OH on the C3 site of the flavonoid units heterocycle of the tannin.The proportion of covalent linkages increases markedly and predominate with increasing temperatures.This tightening of the tannin-protein covalent network formed may be an additional contributing factor both to leather wear resistance and performance as well to leather shrinking when this is subjected to excessive temperatures.
基金support from the National Natural Science Foundation of China(22038008)the science and technology innovation project of China Shenhua Coal to Liquid and Chemical Company Limited(MZYHG-2021-01).
文摘Focusing on the use of imidazolium ionic liquids and quaternary ammonium salts-based deep eutectic solvents for the separation of phenols and nitrogen-containing heteroaromatics,the role of heteroaromatics as specific sites for hydrogen bond-based separation has been investigated.These environmentally friendly solvents are known for their ability to form hydrogen bonds with heteroatoms,a key aspect in separation processes.We quantified the hydrogen bond interaction energy to reach the threshold energy for efficient O-and N-heteroaromatics separation.This article provides an in-depth study of the structural nuances of different hydrogen bonding sites and their affinity properties while conducting a comparative evaluation of the separation efficiency of ionic liquids and deep eutectic solvents from a thermodynamic perspective.Results showed that phenols with dual hydrogen bonding recognition sites were easier to separate than nitrogen-containing heteroaromatics.Imidazolium ionic liquids were more suitable for the extraction of nonbasic nitrogen-containing heteroaromatics,and quaternary ammonium salts-based deep eutectic solvents are more effective for phenols and basic nitrogen-containing heteroaromatics,which was confirmed by Fourier transform infrared spectroscopy and empirical tests.Therefore,this study provides a theoretical basis for the strategy design and selection of extractants for the efficient separation of O-and N-containing aromatic compounds.
基金Jiangsu Provincial Department of Science and Technology,Grant/Award Number:BK20201190Fundamental Research Funds for“Young Talent Support Plan”of Xi'an Jiaotong University,Grant/Award Number:HG6J003+1 种基金“1000-Plan program”of Shaanxi Province and the Velux Foundations through the research center V-Sustain,Grant/Award Number:9455National Key R&D Program of China,。
文摘The use of lithium-sulfur batteries under high sulfur loading and low electrolyte concentrations is severely restricted by the detrimental shuttling behavior of polysulfides and the sluggish kinetics in redox processes.Two-dimensional(2D)few layered black phosphorus with fully exposed atoms and high sulfur affinity can be potential lithium-sulfur battery electrocatalysts,which,however,have limitations of restricted catalytic activity and poor electrochemical/chemical stability.To resolve these issues,we developed a multifunctional metal-free catalyst by covalently bonding few layered black phosphorus nanosheets with nitrogen-doped carbon-coated multiwalled carbon nanotubes(denoted c-FBP-NC).The experimental characterizations and theoretical calculations show that the formed polarized P-N covalent bonds in c-FBP-NC can efficiently regulate electron transfer from NC to FBP and significantly promote the capture and catalysis of lithium polysulfides,thus alleviating the shuttle effect.Meanwhile,the robust 1D-2D interwoven structure with large surface area and high porosity allows strong physical confinement and fast mass transfer.Impressively,with c-FBP-NC as the sulfur host,the battery shows a high areal capacity of 7.69 mAh cm^(−2) under high sulfur loading of 8.74 mg cm^(−2) and a low electrolyte/sulfur ratio of 5.7μL mg^(−1).Moreover,the assembled pouch cell with sulfur loading of 4 mg cm^(−2) and an electrolyte/sulfur ratio of 3.5μL mg^(−1) shows good rate capability and outstanding cyclability.This work proposes an interfacial and electronic structure engineering strategy for fast and durable sulfur electrochemistry,demonstrating great potential in lithium-sulfur batteries.
基金supported by the Doctor Fund and the Program of independent Research for Young Teachers of Yanshan University (Grant Nos.B919 and 020000534)。
文摘We study the friction properties of interlayer bonded bilayer graphene by simulating the movement of a slider on the surface of bilayer graphene using molecular dynamics.The results show that the presence of the interlayer covalent bonds due to the local sp^(3) hybridization of carbon atoms in the bilayer graphene seriously reduces the frictional coefficient of the bilayer graphene surface to 30%,depending on the coverage of interlayer sp^(3) bonds and normal loads.For a certain coverage of interlayer sp3bonds,when the normal load of the slider reaches a certain value,the surface of this interlayer bonded bilayer graphene will lose the friction reduction effect on the slider.Our findings provide guidance for the regulation and manipulation of the frictional properties of bilayer graphene surfaces through interlayer covalent bonds,which may be useful for applications of friction related graphene based nanodevices.
文摘Covalent organic frameworks(COFs)are promising materials for converting solar energy into green hydrogen.However,limited charge separation and transport in COFs impede their application in the photocatalytic hydrogen evolution reaction(HER).In this study,the intrinsically tunable internal bond electric field(IBEF)at the imine bonds of COFs was manipulated to cooperate with the internal molecular electric field(IMEF)induced by the donor-acceptor(D-A)structure for an efficient HER.The aligned orientation of IBEF and IMEF resulted in a remarkable H_(2) evolution rate of 57.3 mmol·g^(-1)·h^(-1)on TNCA,which was approximately 520 times higher than that of TCNA(0.11 mmol·g^(-1)·h^(-1))with the opposing electric field orientation.The superposition of the dual electric fields enables the IBEF to function as an accelerating field for electron transfer,kinetically facilitat-ing the migration of photogenerated electrons from D to A.Furthermore,theoretical calculations indicate that the inhomogeneous charge distribution at the C and N atoms in TNCA not only pro-vides a strong driving force for carrier transfer but also effectively hinders the return of free elec-trons to the valence band,improving the utilization of photoelectrons.This strategy of fabricating dual electric fields in COFs offers a novel approach to designing photocatalysts for clean energy synthesis.
文摘In organic chemistry, as defined by Abegg, Kossel, Lewis and Langmuir, compounds are normally represented using structural formulas called Lewis structures. In these structures, the octet rule is used to define the number of covalent bonds that each atom forms with its neighbors and multiple bonds are frequent. Lewis’ octet rule has unfortunately shown limitations very early when applied to non-organic compounds: most of them remain incompatible with the “rule of eight” and location of charges is uncertain. In an attempt to unify structural formulas of octet and non-octet molecules or single-charge ions, an even-odd rule was recently proposed, together with a procedure to locate charge precisely. This even-odd rule has introduced a charge-dependent effective-valence number calculated for each atom. With this number and the number of covalent bonds of each element, two even numbers are calculated. These numbers are both used to understand and draw structuralformulas of single-covalent-bonded compounds. In the present paper, a procedure is proposed to adjust structural formulas of compounds that are commonly represented with multiple bonds. In order to keep them compatible with the even-odd rule, they will be represented using only single covalent bonds. The procedure will then describe the consequences of bond simplification on charges locations. The newly obtained representations are compared to their conventional structural formulas, i.e. single-bond representation vs. multiple-bond structures. Throughout the comparison process, charges are precisely located and assigned to specific atoms. After discussion of particular cases of compounds, the paper finally concludes that a rule limiting representations of multiplecovalent bonds to single covalent bonds, seems to be suitable for numerous known compounds.
文摘A crystal is a highly organized arrangement of atoms in a solid, wherein a unit cell is periodically repeated to form the crystal pattern. A unit cell is composed of atoms that are connected to some of their first neighbors by chemical bonds. A recent rule, entitled the even-odd rule, introduced a new way to calculate the number of covalent bonds around an atom. It states that around an uncharged atom, the number of bonds and the number of electrons have the same parity. In the case of a charged atom on the contrary, both numbers have different parity. The aim of the present paper is to challenge the even-odd rule on chemical bonds in well-known crystal structures. According to the rule, atoms are supposed to be bonded exclusively through single-covalent bonds. A distinctive criterion, only applicable to crystals, states that atoms cannot build more than 8 chemical bonds, as opposed to the classical model, where each atom in a crystal is connected to every first neighbor without limitation. Electrical charges can be assigned to specific atoms in order to compensate for extra or missing bonds. More specifically the article considers di-atomic body-centered-cubic, tetra-atomic and dodeca-atomic single-face-centered-cubic crystals. In body-centered crystals, atoms are interconnected by 8 covalent bonds. In face-centered crystal, the unit cell contains 4 or 12 atoms. For di-element crystals, the total number of bonds for both elements is found to be identical. The neutrality of the unit cell is obtained with an opposite charge on the nearest or second-nearest neighbor. To conclude, the even-odd rule is applicable to a wide number of compounds in known cubic structures and the number of chemical bonds per atom is not related to the valence of the elements in the periodic table.
文摘Ions or molecules are said to be isoelectronic if they are composed of different elements but have the same number of electrons, the same number of covalent bonds and the same structure. This criterion is unfortunately not sufficient to ensure that a chemical structure is a valid chemical compound. In a previous article, a procedure has been described to draw 2D valid structural formulas: the even-odd rule. This rule has been applied first to single-bonded molecules then to single-charged single-bonded ions. It covers hypovalent, hypervalent or classic Lewis’ octet compounds. The funding principle of the even-odd rule is that each atom of the compound possesses an outer-shell filled only with pairs of electrons. The application of this rule guarantees validity of any single-covalent-bond chemical structure. In the present paper, this even-odd rule and its electron-pair criterion are checked for coherence with an effective-valence isoelectronic rule using numerous known compounds having single-covalent-bond connections. The test addresses Lewis’ octet ions or molecules as well as hypovalent and hypervalent compounds. The article concludes that the even-odd rule and the effective-valence isoelectronicity rule are coherent for known single-covalent-bond chemical compounds.
文摘A decrease in temperature will eventually turn a gas into liquid and then into a solid. Each of these phase change shows a higher degree in cohesion of molecules. While it is usually admitted that molecules in solids form additional connections, the cohesion of molecules in liquids is usually explained by changes in kinetics of molecules. Given that the density of a solid is nearly the same than that of a liquid, the present paper assumes a different stand and considers that connections between molecules must be similar in liquids and in solids. The difference between gas, in which molecules are entirely loose, and liquid, is therefore the presence of an additional connection between gaseous molecules. This paper describes how and where these connections are built with the help of a few rules and a “specific periodic table for liquids”. The coherence of this approach is reinforced by its capacity to explain phase change of forty well-known molecules containing inorganic and organic elements.
文摘Building on the recent success of the even-odd rule, the present paper explores its implications by studying the very specific case of OXO compounds. These compounds are usually represented with double bonds linking two oxygen atoms to a central atom—as in carbon dioxyde—yet can sometimes be drawn in a triangular structure, such as in calcium dioxyde. Measurement data moreover indicate that most OXO compounds have an angle around 120° between oxygen atoms, although that seems incompatible with triangular representations. The aim here is to unify these commonly admitted representations by linking oxygen atoms through a single bond that is longer than usual covalent bonds: an “elongated bond”. This elongated bond has the interesting effect of suppressing the need for double bonds between oxygen and the central atom. The elongated bond concept is applied to about a hundred of molecules and ions and methodically compared to classical representations. It is shown that this new representation, associated to the even-odd rule, is compatible with all studied compounds and can be used in place of their classical drawings. Its usage greatly simplifies complex concepts like resonance and separated charges in gases. Elongated bonds are also shown to be practicable with the isoelectronic rule as well as isomers, and throughout chemical reactions. This study of an especially long and wide angle bond confirms the versatility of the even-odd rule: it is not limited to compounds with short covalent bonds and can include OO covalent bond lengths of more than 200 pm and with OXO angles above 90°.
基金supported by the National Natural Science Foundation of China(Nos.21171040 and 21302019)
文摘A new complex, [Ni2(L)4(H2O)8](1, L1 = 4-(1H-imidazol-4-yl)benzoic acid), has been hydrothermally prepared and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental analysis and PXRD. Complex 1 crystallizes in monoclinic, space group P21/c with α = 22.281(2), b = 7.3959(7), c = 24.978(3) ?, β = 90.876(10), V = 4115.6(7) ?3, Z = 8, C20H22N4O8Ni, Mr = 505.13, Dc = 1.630 g/cm3, μ = 1.001 mm-1, S = 1.080, F(000) = 2096, the final R = 0.452 and wR = 0.1152 for 9380 observed reflections (I 〉 2σ(I)). The result of X-ray diffraction analysis revealed three different kinds of Ni(II) centre mononuclear molecules in the asymmetric unit. The independent mononuclear units are bridged to form a three-dimensional supramolecular polymer by extensive hydrogen bonds and C–H… non-covalent bonding interactions.
文摘When writing equations of chemical dissociation, students and scholars are taught two fundamental rules to balance the equation. On both sides of the equation, the types of elements and their quantity are conserved, as well as the global electrical charge. This paper introduces additional methods during dissociation of gaseous compounds, to precisely describe how electrical charges locally move and how bonding structures are modified. Specific rules revolving around electrons pairs displacements are developed and applied to about 150 dissociations of small gaseous molecules using atoms from the three first rows of the periodic table. Results obtained tend to demonstrate the relevance of these tools for chemists.
基金the Natural Science Found Council of China (Nos. 20671011, 20331010, 90406002 and 90406024) the Key Laboratory of Structural Chemistry Foundation (No. 060017)
文摘A three-dimensional complex [Cu(3-ampy)(HEO)4](SO4)·(H2O) (3-ampy = 3-amino- pyridine) has been synthesized. Crystallographic data: C5H16CuN2O9S, Mr = 343.80, triclinic, space group P1, a = 7.675(2), b = 8.225(3), c = 10.845(3)A, α= 86.996(4), β = 76.292(4), γ= 68.890(4)°, V = 620.0(3)A^3, Z = 2, Dc = 1.841 g/cm^3, F(000) = 354 and μ = 1.971 mm^-1. The structure was refined to R = 0.0269 and wR = 0.0659 for 1838 observed reflections (I 〉 2a(/)). The structure consists of [Cu(3-ampy)(H2O)4]^2+ cations, SO4^2- anions and lattice water molecules. 3-Ampy acting as a bidentate bridging ligand generates a 1D covalent chain. A supramolecular 2D framework is formed through π-π stacking of pyridine rings. The lattice water molecules and SO4^2- anions are located between the adjacent 2D frameworks. The hydrogen bonding interactions from lattice water molecules and SO4^2- anions to coordinate water extend the 2D framework into a 3D network.
基金Supported by the National Natural Science Foundation of China (20171043,20372060), Key National Natural Science Foundation of China (20131010) and "863" National Foundation for High Technology Development and Programming(2002AA302105, 2002AA324080)
文摘Novel hybrid materials containing covalently bonded Terbium-benzoic acid complex in mesoporous silicaSBA-15 (denoted as Tb-SBA-15 ) were prepared via co-condensation of tetrethoxysilane (TEOS) and N-(4-benzoicacid-yl), N'-(propyltriethoxysilyl) urea (denoted as PABI).XRD, FTIR and luminescence spectroscopy were employed to characterize Tb-SBA-15.When monitored by the ligand absorption wavelength (270 nm), Tb-SBA-15 displays the emission of Tb3+ (5D4→7Fj (j = 6, 5, 4, 3 ) transition) due to the energy transfer from the ligands to Tb3+.
文摘With local realism quantum mechanics established, we can simply describe an extranuclear electron as a large-scale elastic ring with an elastic phase trajectory. Several small molecules can thus be strictly calculated through the logical method of establishing an accurate mechanical equilibrium equation describing the molecular structure, then solving the strict solutions of this mechanical equation and the corresponding wave equation. The results (bond length and dissociation energy) are in good agreement with observed results—i.e. if it is only coincidence, there should not be such a high probability of agreement between calculated and observed results. The method of local realism quantum mechanics is no longer the semi-empirical method. The method to calculate the electron pairing energy uses a linear regression of the ionization energy obtained through experiment. Nonetheless, it is exciting that there are diatomic molecules such as Na2, K2 and asymmetric HF molecules that possess a non-zero non-bonding electron number in the calculation examples. Moreover, the molecular structures are very intuitive, and the calculation method is much simpler than existing methods.
基金Project supported by the Foundation of Education Department of Shaanxi Province,China(Grant No.16JK1402)
文摘The EPR parameters of trivalent Er(3+) ions doped in hexagonal Ga N crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be derived from the Kramers doublet Γ6. The EPR g-factors may be ascribed to the stronger covalent bonding and nephelauxetic effects compared with other rare-earth doped complexes, as a result of the mismatch of ionic radii of the impurity Er(3+)ion and the replaced Ga(3+) ion apart from the intrinsic covalency of host Ga N. Furthermore, the J–J mixing effects on the EPR parameters from the high-lying manifolds have been evaluated. It is found that the dominant J–J mixing contribution is from the manifold 2K(15/2), which accounts for about 2.5%. The next important J–J contribution arises from the crystal–field mixture between the ground state 4I(15/2) and the first excited state4I(13/2), and is usually less than 0.2%. The contributions from the rest states may be ignored.
文摘The Paulie’s principle is used for development of the orbital-free (OF) version of the density functional theory. On the example of the three-atomic clusters, Al<sub>3</sub>, Si<sub>3</sub>, and C<sub>3</sub>, it is shown that the OF approach may lead to equilibrium configurations of atomic systems with both the metallic and covalent bonding. The equilibrium interatomic distances, interbonding angles and binding energies are found in good accordance with the known data. Results will be useful for developing of theoretical study of huge molecules and nanoparticles.