期刊文献+
共找到223篇文章
< 1 2 12 >
每页显示 20 50 100
Ionic Conduction and Fuel Cell Performance of Ba0.98Ce0.8Tm0.2O3-α Ceramic
1
作者 仇立干 王茂元 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第6期707-712,746,共7页
The perovskite-type oxide solid solution Ba0.98Ce0.8Tm0.2O3-α was prepared by high temperature solid-state reaction and its single phase character was confirmed by X-ray diffraction. The conduction property of the sa... The perovskite-type oxide solid solution Ba0.98Ce0.8Tm0.2O3-α was prepared by high temperature solid-state reaction and its single phase character was confirmed by X-ray diffraction. The conduction property of the sample was investigated by alternating current impedance spectroscopy and gas concentration cell methods under different gases atmospheres in the temperature range of 500-900 ℃. The performance of the hydrogen-air fuel cell using the sample as solid electrolyte was measured. In wet hydrogen, the sample is a pure protonic conductor with the protonic transport number of 1 in the range of 500-600 ℃, a mixed conductor of proton and electron with the protonic transport number of 0.945-0.933 above 600 ℃. In wet air, the sample is a mixed conductor of proton, oxide ion, and electronic hole. The protonic transport numbers are 0.010-0.021, and the oxide ionic transport numbers are 0.471-0.382. In hydrogen-air fuel cell, the sample is a mixed conductor of proton, oxide ion and electron, the ionic transport numbers are 0.942 0.885. The fuel cell using Ba0.98Ce0.8Tm0.2O3-α as solid electrolyte can work stably. At 900 ℃, the maximum power output density is 110,2 mW/cm2, which is higher than that of our previous cell using Ba0.98Ce0.8Tm0.2O3-α (x〈≤1, RE=Y, Eu, Ho) as solid electrolyte. 展开更多
关键词 Ba0.98Ce0.8Tm0.2O3-α ionic conduction Gas concentration cell Alternating current impedance Fuel cell
下载PDF
Ionic conduction in Ba_xCe_(0.8)Pr_(0.2)O_(3–α)
2
作者 王茂元 仇立干 孙玉凤 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第5期819-824,共6页
BaxCe0.8Pr0.2O3-α (x=0.98-1.03) ceramics were prepared by high temperature solid-state reaction. X-ray diffraction (XRD) patterns showed that the materials were perovskite-type orthorhombic single phase. By using gas... BaxCe0.8Pr0.2O3-α (x=0.98-1.03) ceramics were prepared by high temperature solid-state reaction. X-ray diffraction (XRD) patterns showed that the materials were perovskite-type orthorhombic single phase. By using gas concentration cell and AC impedance spectroscopy methods, the electrical conduction behavior of the materials was investigated in different gases at 500-900 °C. The influence of non-stoichiometry in the materials with x≠1 on conduction properties was studied and compared with that in the material with x=1. The results indicated that Ba1.03Ce0.8Pr0.2O3-α was a pure protonic conductor, and Ba0.98Ce0.8Pr0.2O3-α was a mixed conductor of protons and electrons in wet hydrogen at 500-900 °C. BaCe0.8Pr0.2O3-α was a pure protonic conductor in 500-600 °C, and a mixed conductor of protons and electrons above 600 °C in wet hydrogen. In 500-900 °C, they were all mixed conductors of oxide ions and electronic holes in dry air, and mixed conductors of protons, oxide ions and electronic holes in wet air. Both the protonic and oxide ionic conductivities increased with increasing barium content in the materials in wet hydrogen, dry air and wet air, respectively. 展开更多
关键词 BaxCe0.8Pr0.2O3-α ionic conduction gas concentration cell AC impedance NONSTOICHIOMETRY rare earths
下载PDF
POLYMERIC IONIC CONDUCTORS MODIFIED WITH POLAR GROUPS: PART Ⅱ. STRUCTURE-IONIC CONDUCTION RELATION IN LI-COMPLEX BASED ON MALEIC ANHYDRID E-COPOLYMERIZED METHACRYLATES
3
作者 许康 周彤 +1 位作者 邓正华 万国祥 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1992年第3期223-229,共7页
Ringlike polar monomer maleic, anhydride (MAn) was copolymerized with oligo (oxyethylene) methacrylate (MEO_n), and its effect on ion conduction property of the corresponding polymer-salt complexes was studied. As a c... Ringlike polar monomer maleic, anhydride (MAn) was copolymerized with oligo (oxyethylene) methacrylate (MEO_n), and its effect on ion conduction property of the corresponding polymer-salt complexes was studied. As a consequence the introduction of MAn onto polymer chain retards crystallization of the ether pendants considerably, and improves the ion conductivity to a larger degree compared with other polar groups once investigated (σ_(max),25℃=8.5×10^(-5) S/cm). The structure-ion conduction relation in the polymer-salt matrix is also analyzed macroscopically through the correspondence between composition-dependences of polymerization conversion and isothermal ion conductivity, and microscopically through the measurements of cross polarized light and electron transmission. 展开更多
关键词 ionic conduction Maleic anhydride-copolymerization Oligo(oxyethylene) methacrylate Copolymer-sequence
下载PDF
POLYMERIC IONIC CONDUCTORS MODIFIED WITH POLAR GROUPS:PART Ⅰ. IONIC CONDUCTION AND MECHANICAL PROPERTY OF LI-COMPLEX BASED ON ACRYLAM ID E-COPOLYMERIZED METHACRYLATES
4
作者 邓正华 许康 万国祥 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1992年第3期218-222,共5页
Acrylamide was introduced onto the chain of poly[oligo(oxyethylene) methacrylate] as a polar constituent, and the effect of its presence on the mechanical strength and ionic conduction properties of Li-salt complex ba... Acrylamide was introduced onto the chain of poly[oligo(oxyethylene) methacrylate] as a polar constituent, and the effect of its presence on the mechanical strength and ionic conduction properties of Li-salt complex based on the resultant copolymer was investigated. The introduction of the polar constituent raises chain rigidity, retards crystallization of oligo(oxyethylene) domain and promotes the dissociation of lithium salt. The factors work on the mechanical and conduction properties synergistically, therefore both of the properties are improved simultaneously as the consequence of acrylamide-introduction. 展开更多
关键词 ionic conduction Mechanical property Acrylamide-copolymer Oligo (oxyethylene) methacrylate
下载PDF
IONIC CONDUCTION IN BLENDS OF POLY(PYRIDINIUM ETHYL METHACRYLATE)AND COMB—LIKE COPOLYETHER
5
作者 Qing Zhong XU Guo Xiang WAN Chengdu Institute of Organic Chemistry,Academia Sinica,Chengdu 610041 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第8期735-736,共2页
Poly(pyridinium ethyl methacrylate)was synthesized.The blends of polymeric solid anion conductor,P(PyEMAClO+4)/P(MEO_(16)—AM),were prepared. The temperature—dependence of both the conductivity and anionic mobility i... Poly(pyridinium ethyl methacrylate)was synthesized.The blends of polymeric solid anion conductor,P(PyEMAClO+4)/P(MEO_(16)—AM),were prepared. The temperature—dependence of both the conductivity and anionic mobility in the blends obey Arrhenius relationship,the transport of perchlorate anion being of thermal activation mechanism.Perchlorate anion is a free anion in the blends. 展开更多
关键词 MEO AM LIKE COPOLYETHER PYRIDINIUM ETHYL METHACRYLATE)AND COMB ionic conduction IN BLENDS OF POLY
下载PDF
Synthesis and Ionic Conduction of Cation-deficient Apatite La9.33-2x/3MxSi6O26 Doped with Mg, Ca, Sr 被引量:4
6
作者 袁文辉 顾亚萍 李莉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第3期488-491,共4页
Apatite-type lanthanum silicate with special conduction mechanism via interstitial oxygen has attracted considerable interest in recent years. In this work, pure powder of La9.33 2x/3MxSi6O26 (M=Mg, Ca, Sr) is prepa... Apatite-type lanthanum silicate with special conduction mechanism via interstitial oxygen has attracted considerable interest in recent years. In this work, pure powder of La9.33 2x/3MxSi6O26 (M=Mg, Ca, Sr) is prepared by the sol-gel method with sintering at 1000℃. The powder is characterized by X-ray diffraction (XRD) and scanning electron micrograph (SEM). The apatite can be obtained at relatively low temperature as compared to the conventional solid-state reaction method. The measurements of conductivity of a series of doped samples La9.33-2x/3MxSi6O26 (M=Ca, Mg, Sr) indicate that the type of dopant and the amount have a significant effect on the conductivity. The greatest decrease in conductivity is observed for Mg doping, following the Ca and the Sr doped apatites. The effect is ultimately attributed to the amount of oxygen interstitials, which is affected by the crystal lattice distortion arising from cation vacancies. 展开更多
关键词 SOL-GEL DOPANT cation vacancies ionic conductivity APATITE
下载PDF
Promote the conductivity of solid polymer electrolyte at room temperature by constructing a dual range ionic conduction path 被引量:1
7
作者 Ruiyang Li Haiming Hua +4 位作者 Yuejing Zeng Jin Yang Zhiqiang Chen Peng Zhang Jinbao Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期395-403,I0011,共10页
Poly(ethylene oxide)(PEO)is a classic matrix model for solid polymer electrolyte which can not only dissociate lithium-ions(Li^(+)),but also can conduct Li^(+) through segmental motion in long-range.However,the crysta... Poly(ethylene oxide)(PEO)is a classic matrix model for solid polymer electrolyte which can not only dissociate lithium-ions(Li^(+)),but also can conduct Li^(+) through segmental motion in long-range.However,the crystal aggregation state of PEO restricts the conduction of Li^(+) especially at room temperature.In this work,an amorphous polymer electrolyte with ethylene oxide(EO)and propylene oxide(PO)block structure(B-PEG@DMC)synthesized by the transesterification is firstly obtained,showing an ionic conductivity value of 1.1×10^(5) S/cm at room temperature(25℃).According to the molecular dynamics(MD)simulation,the PO segments would lead to an inconsecutive and hampered conduction of Li^(+),which is not beneficial to the short range conduction of Li^(+).Thus the effect of transformation of aggregation state on the improveme nt of ionic conductivity is not eno ugh,it is n ecessary to further consider the differe nt coupled behaviours of EO and PO segments with Li^(+).In this way,we blend this amorphous polymer(B-PEG@DMC)with PEO to obtain a dual range ionic conductive solid polymer electrolyte(D-SPE)with further improved ionic conductivity promoted by constructing a dual range fast ionic conduction,which eventually shows a further improved ionic conductivity value of 2.3×10^(5) S/cm at room temperature. 展开更多
关键词 Solid polymer electrolyte Amorphous polymer ionic conductivity Room temperature Arrhenius equation
下载PDF
Ionic Conduction in Cubic Zirconias at Low Temperatures
8
作者 YingLI YunfaCHEN JianghongGONG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第1期52-54,共3页
The ac conductivities of Y2O3 or CaO-stabilized cubic zirconias were obtained from complex impedance measurements in the temperature range from 373 to 473 K. By analyzing the temperature-dependence of the resultant dc... The ac conductivities of Y2O3 or CaO-stabilized cubic zirconias were obtained from complex impedance measurements in the temperature range from 373 to 473 K. By analyzing the temperature-dependence of the resultant dc conductivities, it was shown that the activation energies for conduction are lower than those reported previously for the same materials at high temperatures. Comparing the activation energy data with the theoretically estimated values revealed that there may exist a certain, although very small, amount of free oxygen vacancies in the test samples at low temperatures and the conduction in the test samples is a result of the migration of these free oxygen vacancies. 展开更多
关键词 ionic conductivity Solid electrolyte ZIRCONIA Activation energy
下载PDF
A Modification of LiMn2O4 by Ionic Conductive Agent and Electronic Conductive Agent Coating
9
作者 Xiaohui Sun Meng Wang +1 位作者 Tianming Yuan Jingkang Li 《Natural Science》 2024年第1期1-6,共6页
Carbon was used as electronic conductive agent, and metasilicic acid lithium (Li<sub>2</sub>SiO<sub>3</sub>) as ionic conductive agent, the two factors were investigated cooperatively. We evalu... Carbon was used as electronic conductive agent, and metasilicic acid lithium (Li<sub>2</sub>SiO<sub>3</sub>) as ionic conductive agent, the two factors were investigated cooperatively. We evaluated their effect by using spherical spinel LiMn<sub>2</sub>O<sub>4</sub> which prepared ourselves as cathode material. Then Li<sub>2</sub>SiO<sub><sub></sub>3</sub>/carbon surface coating on LiMn<sub><sub></sub>2</sub>O<sub>4</sub> (LMO/C/LSO) which Li<sub><sub></sub>2</sub>SiO<sub><sub></sub>3</sub> inside and carbon/Li<sub><sub></sub>2</sub>SiO<sub><sub></sub>3</sub> coated LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub> (LMO/LSO/C) were prepared, All of materials were characterized by X-ray diffraction (XRD) and electrochemical test;spherical LiMn<sub></sub>2O<sub></sub>4 was characterized by scanning electron microscopy (SEM);and coated materials were characterized by transmission electron microscopy (TEM). While uncoated spinel LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub> maintained 72% of capacity in 60 cycles by the rate of 0.2C, and LMO/LSO/C showed the best electrochemical performance, 89% of the initial capacity remained after 75 cycles at 0.2C. Furthermore, the rate performance of LMO/LSO/C also improved obviously, about 30 mAh·g<sup>-1</sup> of capacity attained at the rate of 5C, higher than LMO/C/LSO and bare LiMn<sub><sub></sub>2</sub>O<sub><sub></sub>4</sub>. 展开更多
关键词 Electronic conduction ionic conduction LMO/LSO/C
下载PDF
Lithium-site substituted argyrodite-type Li_(6)PS_(5)I solid electrolytes with enhanced ionic conduction for all-solid-state batteries
10
作者 GAO Ling XIE YuLin +11 位作者 TONG Yan XU Miao YOU JiaLe WEI HuiPing YU XiangXiang XU SiQi ZHANG Yi CHE Yong TANG Ya SUZUKI Kota KANNO Ryoji ZHAO GuoWei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第7期2059-2068,共10页
Argyrodites,Li_(6)PS_(5)X(X=Cl,Br,I),have piqued the interest of researchers by offering promising lithium ionic conductivity for their application in all-solid-state batteries(ASSBs).However,other than Li_(6)PS_(5)Cl... Argyrodites,Li_(6)PS_(5)X(X=Cl,Br,I),have piqued the interest of researchers by offering promising lithium ionic conductivity for their application in all-solid-state batteries(ASSBs).However,other than Li_(6)PS_(5)Cl(651Cl)and Li_(6)PS_(5)Br(651Br),Li_(6)PS_(5)I(651I)shows poor ionic conductivity(10^(-7)S cm^(-1)at 298 K).Herein,we present Al-doped 651I with I^(-)/S^(2-)site disordering to lower activation energy(Ea)and improve ionic conductivity.They formed argyrodite-type solid solutions with a composition of(Li_(6–3x)Al_(x))PS_(5)I in 0≤x≤0.10,and structural analysis revealed that Al^(3+)is located at Li sites.Also,the Al-doped samples contained anion I^(-)/S^(2-)site disorders in the crystal structures and smaller lattice parameters than the non-doped samples.Impedance spectroscopy measurements indicated that Al-doping reduced the ionic diffusion barrier,Ea,and increased the ionic conductivity to 10^(-5)S cm^(-1);the(Li5.7Al0.1)PS5I had the highest ionic conductivity in the studied system,at 2.6×10^(-5)S cm^(-1).In a lab-scale ASSB,with(Li_(5.7)Al_(0.1))PS_(5)I functioned as a solid electrolyte,demonstrating the characteristics of a pure ionic conductor with negligible electronic conductivity.The evaluated ionic conduction is due to decreased Li+content and I^(-)/S^(2-)disorder formation.Li-site cation doping enables an in-depth understanding of the structure and provides an additional approach to designing betterperforming SEs in the argyrodite system. 展开更多
关键词 argyrodite Li6PS5I solid electrolytes ionic conductor ionic conductivity
原文传递
Bacterial Cellulose/Zwitterionic Dual-network Porous Gel Polymer Electrolytes with High Ionic Conductivity
11
作者 侯朝霞 WANG Haoran QU Chenying 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期596-605,共10页
Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with... Bacterial cellulose(BC)was innovatively combined with zwitterionic copolymer acrylamide and sulfobetaine methacrylic acid ester[P(AM-co-SBMA)]to build a dual-network porous structure gel polymer electrolytes(GPEs)with high ionic conductivity.The dual network structure BC/P(AM-co-SBMA)gels were formed by a simple one-step polymerization method.The results show that ionic conductivity of BC/P(AM-co-SBMA)GPEs at the room temperature are 3.2×10^(-2) S/cm@1 M H_(2)SO_(4),4.5×10^(-2) S/cm@4 M KOH,and 3.6×10^(-2) S/cm@1 M NaCl,respectively.Using active carbon(AC)as the electrodes,BC/P(AM-co-SBMA)GPEs as both separator and electrolyte matrix,and 4 M KOH as the electrolyte,a symmetric solid supercapacitors(SSC)(AC-GPE-KOH)was assembled and testified.The specific capacitance of AC electrode is 173 F/g and remains 95.0%of the initial value after 5000 cycles and 86.2%after 10,000 cycles. 展开更多
关键词 bacterial cellulose ZWITTERION gel polymer electrolytes ionic conductivity dual-network structure
下载PDF
Improvement of ionic conductivity of solid polymer electrolyte based on Cu-Al bimetallic metal-organic framework fabricated through molecular grafting
12
作者 Liu-bin SONG Tian-yuan LONG +5 位作者 Min-zhi XIAO Min LIU Ting-ting ZHAO Yin-jie KUANG Lin JIANG Zhong-liang XIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2943-2958,共16页
A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of th... A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling. 展开更多
关键词 polyethylene oxide Cu−Al bimetallic metal-organic framework solid lithium metal battery molecular grafting ionic conductivity
下载PDF
Incorporation of Ionic Conductive Polymers into Sulfide Electrolyte-Based Solid-State Batteries to Enhance Electrochemical Stability and Cycle Life
13
作者 Juhyoung Kim Woonghee Choi +1 位作者 Seong-Ju Hwang Dong Wook Kim 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期4-12,共9页
Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorgani... Sulfide-based inorganic solid electrolytes are promising materials for high-performance safe solid-state batteries.The high ion conductivity,mechanical characteristics,and good processability of sulfide-based inorganic solid electrolytes are desirable properties for realizing high-performance safe solid-state batteries by replacing conventional liquid electrolytes.However,the low chemical and electrochemical stability of sulfide-based inorganic solid electrolytes hinder the commercialization of sulfide-based safe solid-state batteries.Particularly,the instability of sulfide-based inorganic solid electrolytes is intensified in the cathode,comprising various materials.In this study,carbonate-based ionic conductive polymers are introduced to the cathode to protect cathode materials and suppress the reactivity of sulfide electrolytes.Several instruments,including electrochemical spectroscopy,X-ray photoelectron spectroscopy,and scanning electron microscopy,confirm the chemical and electrochemical stability of the polymer electrolytes in contact with sulfide-based inorganic solid electrolytes.Sulfide-based solid-state cells show stable electrochemical performance over 100 cycles when the ionic conductive polymers were applied to the cathode. 展开更多
关键词 composite cathode electrochemical stability ionic conductive polymer solid-state battery sulfide solid electrolyte
下载PDF
Ionic Conduction in In3+-doped ZrP2O7 at Intermediate Temperatures 被引量:4
14
作者 张红敏 肖佳 +2 位作者 杨志杰 王洪涛 马桂林 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2012年第8期1826-1830,共5页
A new series of Zr1-xInxP2O7 (x=0.03, 0.06, 0.09, 0.12) samples were prepared by a solid state reaction method. XRD patterns indicated that the samples of x=0.03–0.09 exhibited a single cubic phase structure, and t... A new series of Zr1-xInxP2O7 (x=0.03, 0.06, 0.09, 0.12) samples were prepared by a solid state reaction method. XRD patterns indicated that the samples of x=0.03–0.09 exhibited a single cubic phase structure, and the doping limit of In3+ in ZrP2O7 was x=0.09. The conduction behavior was investigated in wet hydrogen using various electrochemical methods including AC impedance spectroscopy, isotope effect, gas concentration cells at intermediate temperatures (373–573 K). The conductivities were affected by the doping levels, and increased in the order: σ (x=0.03)〈σ (x=0.12)〈σ (x=0.06)〈σ (x=0.09). The highest conductivity was observed for the sample Zr0.91In0.09P2O7 to be 1.59×10-2 S·cm-1 in wet hydrogen at 573 K. The isotope effect also confirmed the proton conduction of the sample under water vapor-containing atmosphere. It was found that in wet hydrogen atmosphere Zr0.91In0.09P2O7 was almost pure ionic conductor, the ionic conduction was contributed mainly to proton and partially to oxide ionic. The H2/air fuel cell using x=0.09 sample as electrolyte (thickness: 1.73 mm) generated a maximum power density of 13.5 mW·cm?2 at 423 K and 16.9 mW·cm?2 at 448 K, respectively. 展开更多
关键词 Zr1-xInxP2O7 ionic conduction CONDUCTIVITY isotope effect gas concentration cell fuel cell
原文传递
Deep dive into anionic metal-organic frameworks based quasi-solid-state electrolytes
15
作者 Tingzheng Hou Wentao Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期313-320,I0008,共9页
The development and application of high-capacity energy storage has been crucial to the global transition from fossil fuels to green energy.In this context,metal-organic frameworks(MOFs),with their unique 3D porous st... The development and application of high-capacity energy storage has been crucial to the global transition from fossil fuels to green energy.In this context,metal-organic frameworks(MOFs),with their unique 3D porous structure and tunable chemical functionality,have shown enormous potential as energy storage materials for accommodating or transporting electrochemically active ions.In this perspective,we specifically focus on the current status and prospects of anionic MOF-based quasi-solid-state-electrolytes(anionic MOF-QSSEs)for lithium metal batteries(LMBs).An overview of the definition,design,and properties of anionic MOF-QSSEs is provided,including recent advances in the understanding of their ion transport mechanism.To illustrate the advantages of using anionic MOF-QSSEs as electrolytes for LMBs,a thorough comparison between anionic MOF-QSSEs and other well-studied electrolyte systems is made.With these in-depth understandings,viable techniques for tuning the chemical and topological properties of anionic MOF-QSSEs to increase Li+conductivity are discussed.Beyond modulation of the MOFs matrix,we envisage that solvent and solid-electrolyte interphase design as well as emerging fabrication techniques will aid in the design and practical application of anionic MOF-QSSEs. 展开更多
关键词 Anionic metal–organic frameworks Quasi-solid-state electrolytes ionic conduction Lithium metal batteries Lithium-ion batteries
下载PDF
Synthesis and properties of ionic conduction polymer for anodic bonding 被引量:2
16
作者 Xu Yin Cui-Rong Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第3期289-292,共4页
In this study,powders of polyethylene oxide(PEO) and lithium perchlorate(Li Cl O4) were used as the raw materials for producing the ionic conduction polymer PEO–Li Cl O4 with different complex-ratios and used for... In this study,powders of polyethylene oxide(PEO) and lithium perchlorate(Li Cl O4) were used as the raw materials for producing the ionic conduction polymer PEO–Li Cl O4 with different complex-ratios and used for anodic bonding through high energy ball milling method,and meanwhile,X-ray diffraction,differential scanning calorimetry(DSC),ultraviolet absorption spectrum test analysis,and other relevant methods were adopted to research the complexation mechanism of PEO and Li Cl O4 and the impact of the ionic conduction polymer with different complex-ratios on the anodic bonding process under the action of the strong static electric field.The research results showed that the crystallization of PEO could be effectively obstructed with increased addition of Li Cl O4,thus increasing the content of PEO–Li Cl O4 in amorphous area and continuously improving the complexation degree and the room-temperature conductivity thereof,and that the higher room-temperature conductivity enabled PEO–Li Cl O4 to better bond with metallic aluminum and have better bonding quality.As the new encapsulating material,such research results will promote the application of new polymer functional materials in micro-electromechanical system(MEMS) components. 展开更多
关键词 anodic conduction bonding ionic ultraviolet metallic amorphous calorimetry milling encapsulation
原文传递
Ionic liquid electrolytes for sodium-ion batteries to control thermal runaway 被引量:3
17
作者 Keith Sirengo Aswathy Babu +1 位作者 Barry Brennan Suresh C.Pillai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期321-338,I0008,共19页
Sodium-ion batteries are expected to be more affordable for stationary applications than lithium-ion batteries,while still offering sufficient energy density and operational capacity to power a significant segment of ... Sodium-ion batteries are expected to be more affordable for stationary applications than lithium-ion batteries,while still offering sufficient energy density and operational capacity to power a significant segment of the battery market.Despite this,thermal runaway explosions associated with organic electrolytes have led to concerns regarding the safety of sodium-ion batteries.Among electrolytes,ionic liquids are promising because they have negligible vapor pressure and show high thermal and electrochemical stability.This review discusses the safety contributions of these electrolyte properties for high-temperature applications.The ionic liquids provide thermal stability while at the same time promoting high-voltage window battery operations.Moreover,apart from cycle stability,there is an additional safety feature attributed to modified ultra-concentrated ionic liquid electrolytes.Concerning these contributions,the following have been discussed,heat sources and thermal runaway mechanisms,thermal stability,the electrochemical decomposition mechanism of stable cations,and the ionic transport mechanism of ultra-concentrated ionic liquid electrolytes.In addition,the contributions of hybrid electrolyte systems consisting of ionic liquids with either organic carbonate or polymers are also discussed.The thermal stability of ionic liquids is found to be the main contributor to cell safety and cycle stability.For high-temperature applications where electrolyte safety,capacity,and cycle stability are important,highly concentrated ionic liquid electrolyte systems are potential solutions for sodium-ion battery applications. 展开更多
关键词 Thermal stability ionic liquids Sodium-ion batteries Cycle stability ionic conductivity
下载PDF
Polymer dispersed ionic liquid electrolytes with high ionic conductivity for ultrastable solid-state lithium batteries 被引量:2
18
作者 Shengyu Qin Yaping Cao +7 位作者 Jianying Zhang Yunxiao Ren Chang Sun Shuoning Zhang Lanying Zhang Wei Hu Meina Yu Huai Yang 《Carbon Energy》 SCIE CSCD 2023年第5期115-126,共12页
Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electro... Solid polymer electrolytes(SPEs)have emerged as one of the most promising candidates for building solid-state lithium batteries due to their excellent flexibility,scalability,and interfacial compatibility with electrodes.However,the low ionic conductivity and poor cyclic stability of SPEs do not meet the requirements for practical applications of lithium batteries.Here,a novel polymer dispersed ionic liquid-based solid polymer electrolyte(PDIL-SPE)is fabricated using the in situ polymerization-induced phase separation(PIPS)method.The as-prepared PDIL-SPE possesses both outstanding ionic conductivity(0.74 mS cm^(-1) at 25℃)and a wide electrochemical window(up to 4.86 V),and the formed unique three-dimensional(3D)co-continuous structure of polymer matrix and ionic liquid in PDIL-SPE can promote the transport of lithium ions.Also,the 3D co-continuous structure of PDIL-SPE effectively accommodates the severe volume expansion for prolonged lithium plating and stripping processes over 1000 h at 0.5 mA cm^(-2) under 25℃.Moreover,the LiFePO_(4)//Li coin cell can work stably over 150 cycles at a 1 C rate under room temperature with a capacity retention of 90.6%from 111.1 to 100.7 mAh g^(-1).The PDIL-SPE composite is a promising material system for enabling the ultrastable operation of solid-state lithium-metal batteries. 展开更多
关键词 high ionic conductivity lithium batteries solid polymer electrolytes solid-state batteries
下载PDF
Ion–Electron Coupling Enables Ionic Thermoelectric Material with New Operation Mode and High Energy Density 被引量:1
19
作者 Yongjie He Shaowei Li +15 位作者 Rui Chen Xu Liu George Omololu Odunmbaku Wei Fang Xiaoxue Lin Zeping Ou Qianzhi Gou Jiacheng Wang Nabonswende Aida Nadege Ouedraogo Jing Li Meng Li Chen Li Yujie Zheng Shanshan Chen Yongli Zhou Kuan Sun 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期193-203,共11页
Ionic thermoelectrics(i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However,as ions cannot enter external circuit, the uti... Ionic thermoelectrics(i-TE) possesses great potential in powering distributed electronics because it can generate thermopower up to tens of millivolts per Kelvin. However,as ions cannot enter external circuit, the utilization of i-TE is currently based on capacitive charge/discharge, which results in discontinuous working mode and low energy density. Here,we introduce an ion–electron thermoelectric synergistic(IETS)effect by utilizing an ion–electron conductor. Electrons/holes can drift under the electric field generated by thermodiffusion of ions, thus converting the ionic current into electrical current that can pass through the external circuit. Due to the IETS effect, i-TE is able to operate continuously for over 3000 min.Moreover, our i-TE exhibits a thermopower of 32.7 mV K^(-1) and an energy density of 553.9 J m^(-2), which is more than 6.9 times of the highest reported value. Consequently, direct powering of electronics is achieved with i-TE. This work provides a novel strategy for the design of high-performance i-TE materials. 展开更多
关键词 ionic thermoelectric Ion–electron coupling ionic conductivity THERMOPOWER
下载PDF
Ionic Conduction of ANovel Comb Polvmer Electrolyte Based on Maleic Anhydride Copolymer with Oligo-oxyethylene Side Chains
20
《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1995年第3期243-249,共7页
comb-shaped polynier (BM350) with oligo-oxyetliylene side chains of thetype-O (CH_2CH_2O )_7CH_3 was prepared from methyl vinyl ether /maleic anhydridecopolymer- Honiogeneous aniorplious polymer electrolyte cornplexes... comb-shaped polynier (BM350) with oligo-oxyetliylene side chains of thetype-O (CH_2CH_2O )_7CH_3 was prepared from methyl vinyl ether /maleic anhydridecopolymer- Honiogeneous aniorplious polymer electrolyte cornplexes were madefrom the conib polymer and LiCF_3SO_3 by solvent casting from acetone, and theirconductivities were nieasured as a function of temperature and salt concentration.Maxiniuni conductivity close to 5. 08 ×10 ̄(-5) Scm ̄(-1) was obtained at room tempera-tureancl at a [Li]/[EO] ratio of about 0. 12. The conductivity which displayednon-Arrheni us behaviour was analyzed using the Vogel-Tammann-Fulcher equationand interpreted on the basis of the configurational entropy model. The results ofmid-IR sliowed that the coortlination of Li ̄+ to side chains made the C-O-C bandbecome broader and shift sliglitly- X-ray photoelectron spectroscopy analysis indi-cated that the oxygen atonis in the two situations could coordinate to Li ̄+ and thiscoortlination resulted in the reduction of the electron orbit binding energy of F andS. 展开更多
关键词 Polynier electrolyte ionic conductivity LiCF_3SO_3 salt complexes Ion-IC transport
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部