Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs...Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs and reveal a peculiar structural transition behavior from order to disorder above a threshold thickness.This behavior can be explained by the variation of interfacial forces with increasing distance from the solid surface.Direct structural observation of different ILs highlights the influence of the ionic structure on the growth process.Notably,the length of the alkyl chain in the cation is found to be a determining factor for the ordering trend.Also,the thermal stability of surface-confined ILs is investigated in depth by controlling annealing treatments.It is found that the ordered monolayer ILs exhibit high robustness against high temperatures.Our findings provide new perspectives on the properties of surface-confined ILs and open up potential avenues for manipulating the structures of nanometer-thick IL films for various applications.展开更多
The electrochemical behavior of Al(Ⅲ)in urea-1-butyl-3-methylimidazolium chloride-aluminum chloride(urea-BMIC-AlCl_(3))ionic liquids,and the effect of potential and temperature on the characterization of cathode prod...The electrochemical behavior of Al(Ⅲ)in urea-1-butyl-3-methylimidazolium chloride-aluminum chloride(urea-BMIC-AlCl_(3))ionic liquids,and the effect of potential and temperature on the characterization of cathode products,current efficiency and energy consumption of aluminum electrorefining have been investigated.Cyclic voltammetry showed that the electrochemical reduction of Al(Ⅲ)was a one-step three-electron-transfer irreversible reaction,and the electrochemical reaction was controlled by diffusion.The diffusion coefficient of Al(Ⅲ)in urea-BMIC-AlCl_(3)ionic liquids at 313 K was 1.94×10^(−7)cm^(2)/s.The 7075 aluminum alloy was used as an anode for electrorefining,and the cathode products were analyzed by XRD,SEM and EDS.The results from XRD analysis indicated that the main phase of the cathode products was aluminum.The results from SEM and EDS characterization revealed that the cathode product obtained by electrorefining−1.2 V(vs.Al)was dense and uniform,and the mass fraction of aluminum decreased from 99.61%to 99.10%as the experimental temperature increased from 313 K to 333 K.In this work,the optimum experimental conditions were−1.2 V(vs.Al)and 313 K.At this time,the cathode current efficiency was 97.80%,while the energy consumption was 3.72 kW·h/kg.展开更多
Porous ionic liquids have demonstrated excellent performance in the field of separation,attributed to their high specific surface area and efficient mass transfer.Herein,task-specific protic porous ionic liquids(PPILs...Porous ionic liquids have demonstrated excellent performance in the field of separation,attributed to their high specific surface area and efficient mass transfer.Herein,task-specific protic porous ionic liquids(PPILs)were prepared by employing a novel one-step coupling neutralization reaction strategy for extractive desulfurization.The single-extraction efficiency of PPILs reached 75.0%for dibenzothiophene.Moreover,adding aromatic hydrocarbon interferents resulted in a slight decrease in the extraction efficiency of PPILs(from 45.2%to 37.3%,37.9%,and 33.5%),indicating the excellent extraction selectivity of PPILs.The experimental measurements and density functional theory calculations reveal that the surface channels of porous structures can selectively capture dibenzothiophene by the stronger electrophilicity(Eint(HS surface channel/DBT)=-39.8 kcal mol^(-1)),and the multiple extraction sites of ion pairs can effectively enrich and transport dibenzothiophene from the oil phase into PPILs throughπ...π,C-H...πand hydrogen bonds interactions.Furthermore,this straightforward synthetic strategy can be employed in preparing porous liquids,offering new possibilities for synthesizing PPILs with tailored functionalities.展开更多
Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI...Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI/CuIIby mechanical ball milling method. This defective HKUST-1is embellished by functionalized ionic liquids as hydrophobic armor, making the hybrid HIL1@HKUST-1 exhibits outstanding water stability,remarkable SO_(2) adsorption (up to 5.71 mmol g^(-1)), and record-breaking selectivity (1070 for SO_(2)/CO_(2) and 31,515 for SO_(2)/N_(2)) at 25 ℃ and0.1 bar, even in wet conditions.展开更多
Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However...Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions.展开更多
To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interest...To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interesting phenomena were observed in which EtOH exerted different effects on the flotation efficiency of two ILs with similar structures.When EtOH was used to dissolve 1-dodecyl-3-methylimidazolium chloride(C12[mim]Cl)and as a collector for pure quartz flotation tests at a concentration of 1×10^(−5)mol·L^(−1),quartz recovery increased from 23.77%to 77.91%compared with ILs dissolved in water.However,quartz recovery of 1-dodecyl-3-methylim-idazolium hexafluorophosphate(C12[mim]PF6)decreased from 60.45%to 24.52%under the same conditions.The conditional experi-ments under 1×10^(−5)mol·L^(−1)ILs for EtOH concentration and under 2vol%EtOH for ILs concentration confirmed this difference.After being affected by EtOH,the mixed ore flotation tests of quartz and hematite showed a decrease in the hematite concentrate grade and re-covery for the C12[mim]Cl collector,whereas the hematite concentrate grade and recovery for the C12[mim]PF6 collector increased.On the basis of these differences and observations of flotation foam,two-phase bubble observation tests were carried out.The EtOH promoted the foam height of two ILs during aeration.It accelerated static froth defoaming after aeration stopped,and the foam of C12[mim]PF6 de-foaming especially quickly.In the discussion of flotation tests and foam observation,an attempt was made to explain the reasons and mechanisms behind the diverse phenomena using the dynamic surface tension effect and solvation effect results from EtOH.The solva-tion effect was verified through Fourier transform infrared(FT-IR),X-ray photoelectron spectroscopy(XPS),and Zeta potential tests.Al-though EtOH affects the adsorption of ILs on the ore surface during flotation negatively,it holds an positive value of inhibiting foam mer-ging during flotation aeration and accelerating the defoaming of static foam.And induce more robust secondary enrichment in the mixed ore flotation of the C12[mim]PF6 collector,facilitating effective mixed ore separation even under inhibitor-free conditions.展开更多
The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and...The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly.展开更多
Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of act...Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs;as novel solvents for improving the solubility of drugs in carriers;as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs;and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs.展开更多
With the vigorous development of the electronics industry,the consumption of lithium continues to increase,and more lithium needs to be mined to meet the development of the industry.The content of lithium in the solut...With the vigorous development of the electronics industry,the consumption of lithium continues to increase,and more lithium needs to be mined to meet the development of the industry.The content of lithium in the solution is much higher than that of minerals,but the interference of impurity ions increases the difficulty of extracting lithium ions.Therefore,we prepared an imidazole-based ionic liquid(1-butyl-3-methylImidazolium bis(trifluoromethyl sulfonyl)imide)(IL)for efficient lithium extraction from aqueous solutions by solvent extraction.Using an extraction consisting of 10%IL,85% tributyl phosphate(TBP),and 5% dichloroethane and an organic to aqueous phase ratio(O/A)of 2/1,over 64.23% of Li were extracted,and the extraction rate after five-stage extraction could reach more than 96%.The addition of ammonium ions to the solution inhibited the extraction of Ni,and the separation coefficient between lithium and nickel approached infinity,showing a very perfect separation effect.Fouriertransform infrared spectroscopy and slope methods were used to analyze the changes that occurred during extraction,revealing possible extraction mechanisms.In addition,the LiCl solution generated during the preparation of ionic liquids was mixed with the stripping solution,and the battery-grade lithium carbonate was prepared by Na_(2)CO_(3) precipitation,with a purity of 99.74%.This study provides an efficient and sustainable strategy for recovering lithium from the solution.展开更多
The transformation of CO_(2)into high value-added product is a promising pathway for utilizing CO_(2).However,the process tends to require harsh reaction conditions owing to CO_(2)chemical inertness.Designing a high e...The transformation of CO_(2)into high value-added product is a promising pathway for utilizing CO_(2).However,the process tends to require harsh reaction conditions owing to CO_(2)chemical inertness.Designing a high efficiency catalytic system with environmentally benign characteristic are important determinants.In this work,protic ionic liquids[TMG][2-OPy]were prepared via one-step neutralization between 1,1,3,3-tetramethylguanidine and 2-hydroxypyridine,applying to the domain of synthesizing quinzoline-2,4(1 H,3H)-diones from CO_(2)and 2-aminobenzontiles without any solvent or metal,achieving the yield of 97%at 90℃for 8 h under atmospheric.A series of substrates with good to acceptable yield were detected,revealing the generality and universality of the catalyst.Furthermore,the system could be facilely reused for at least six runs,retaining the yield of 94%.A preliminary kinetic equation is calculated with the activation energy of 68 kJ·mol^(-1),and a plausible reaction mechanism was put forward.This study highlights that the[TMG][2-OPy]enables to activate CO_(2)carboxylation efficiently.展开更多
Metal halide perovskite solar cells(PSCs)have shown great potential to become the next generation of photovoltaic devices due to their simple fabrication techniques,low cost,and soaring power conversion efficiency(PCE...Metal halide perovskite solar cells(PSCs)have shown great potential to become the next generation of photovoltaic devices due to their simple fabrication techniques,low cost,and soaring power conversion efficiency(PCE).However,mismatched with the quickly updated PCEs,the improvement of device stability is challenging and still remains a critical hurdle in the path to commercialization.Recently,ionic liquids(ILs)have been found to play multiple roles in obtaining efficient and stable PSCs.These ILs usually consist of large organic cations and organic or inorganic anions,which have weak electrostatic attraction and are generally liquid at around 100℃.ILs are almost non-volatile,non-flammable,with high ionic conductivity and excellent thermal and electrochemical stability.The roles of ILs in PSCs vary with their composition,that is,the types of anions and cations.In this review,we summarize the roles of anions and cations in terms of precursor solutions,additives,perovskite/charge transport layer interface engineering,and charge transport layers.This article aims to set up a structure–property-stability-performance correlations conferred by the IL in PSC and provide assistance for the anion and cation selection for improving the quality of perovskite film,optimizing interface contact,reducing defect states,and improving charge extraction and transport characteristics.Finally,the application of IL in PSCs is discussed and prospected.展开更多
Phenol in waste water threatens human health and is difficultly to be decomposed by nature.Efficient degradation of high-loaded phenol in water under mild condition is still a great challenge.Herein,ionic liquids with...Phenol in waste water threatens human health and is difficultly to be decomposed by nature.Efficient degradation of high-loaded phenol in water under mild condition is still a great challenge.Herein,ionic liquids with tungstate anion were designed and prepared.It was found that dodecyltrimethylammonium tungstate could catalyzed degradation of phenol into gases and water thoroughly at 323 k in 8 h.Tungstate anion revealed good catalytic oxidative activity and long carbon chain group connecting with cation of ionic liquids enriched phenol around catalysts,which induced the complete degradation of phenol at mild conditions.Increasing the amounts of hydrogen peroxide benefited to the total degradation of phenol.In addition,the ionic liquid could be reused for its excellent thermal stability.Our work provided a different strategy to treat waste water containing phenol efficiently.展开更多
Diphenyl carbonate(DPC)is one of the versatile carbonates,and is often used for the production of polycarbonates.In recent years,the catalytic synthesis of DPC has become an important topic but the development of a hi...Diphenyl carbonate(DPC)is one of the versatile carbonates,and is often used for the production of polycarbonates.In recent years,the catalytic synthesis of DPC has become an important topic but the development of a highly active metal-free catalyst is a great challenge.Herein,a series of ionic liquids-SBA-15 hybrid catalysts with different functional groups have been developed for the synthesis of DPC under solventfree condition,which are effective and clean instead of the metal-containing catalysts.It is found that in the presence of[SBA-15-IL-OH]Br catalyst,methyl phenyl carbonate(MPC)conversion of 80.5%along with 99.6%DPC selectivity is achieved,the TOF value is thrice higher than the best value reported by using transition metal-based catalysts.Moreover,the catalyst displays remarkable stability and recyclability.This work provides a new idea to design and prepare eco-friendly catalysts in a broad range of applications for the green synthesis of carbonates.展开更多
Metal-organic frameworks(MOFs)have attracted considerable research attention as a new type of porous material for catalytic applications.Herein,2,5-dihydroxyterephthalic acid was proposed to replace conventional terep...Metal-organic frameworks(MOFs)have attracted considerable research attention as a new type of porous material for catalytic applications.Herein,2,5-dihydroxyterephthalic acid was proposed to replace conventional terephthalic acid and reacted with chromic nitrate nonahydrate to synthesize a functional metal–organic framework(FMIL-101).This was then used to immobilize various compound ionic liquids to prepare three ionic liquids immobilized on FMIL-101 catalysts,namely,FMIL-101-[HeMIM]Cl/(ZnBr_(2))_(2),FMIL-101-[CeMIM]Cl/(ZnBr_(2))_(2),and FMIL-101-[AeMIM]Br/(ZnBr_(2))_(2).After characterization by Fourier-transform infrared spectroscopy,X-ray diffraction,ultraviolet spectroscopy,thermogravimetry,specific surface area analysis,and scanning electron microscopy,the catalysts were used to mediate cycloaddition reactions between carbon dioxide(CO_(2))and propylene oxide.The effects of reaction temperature,reaction pressure,reaction time,and catalyst dosage on the catalytic performance were investigated.The results revealed that the FMIL-101-supported CIL catalysts afforded the target product propylene carbonate with good catalytic performance and thermal stability.The optimal catalyst,FMIL-101-[CeMIM]Cl/(ZnBr_(2))_(2),displayed a propylene oxide conversion of 98.64%and a propylene carbonate selectivity of 96.63%at a reaction temperature of 110℃,a reaction pressure of 2.0 MPa,a catalyst dosage of 2.0%relative to propylene oxide,and a reaction time of 2.5 h.In addition,the conversion and selectivity of the catalyst decreased slightly after four cycles.Additionally,the catalyst decreased slightly in catalytic performance after being recycled four times.展开更多
Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammo...Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammonium room temperature ionic liquids with benzene as a co-solvent. The corrosion resistance of the as-deposited Al layers was evaluated in 3.5% NaCl solution by the electrochemical technologies. The Al depositions were characterized by scanning electron microscopy equipped with energy dispersion X-ray. The results show that the microstructures of the Al depositions have spherical equiaxed grains obtained at a high current density, and bulk grains at a low current density. The Al deposition obtained at 12.3 mA/cm2 has a smooth and compact surface. The electrochemical measurements indicate that the thicker Al deposition can more effectively protect the Mg substrate. The Al deposition with bulk grains hardly protects the AZ31 Mg substrate from corrosion owing to its porosity.展开更多
It is difficult to directly electroplate Al on Mg alloys. The effects of pretreatment parameters on the corrosion resistance of films obtained on AZ31 Mg alloy surface were studied by using potentiodynamic polarizatio...It is difficult to directly electroplate Al on Mg alloys. The effects of pretreatment parameters on the corrosion resistance of films obtained on AZ31 Mg alloy surface were studied by using potentiodynamic polarization curves, to produce a compact interfacial layer as zinc-immersion deposition. After the substrate was pretreated under optimized conditions, aluminum was electrodeposited on AZ31 from TMPAC-AlCl3 room temperature ionic liquids. The depositions were characterized by scanning electron microscope equipped with energy dispersion X-ray. The results show that the traditional pretreatment of Mg alloys was successfully used for the Al-electroplating process from TMPAC-AlCl3 ionic liquids. The entire procedure includes alkaline cleaning, chemical pickling, surface activation (400 mL/L HF acid, 10 min), zinc-immersion (20 min) and anhydrous treatment. A relatively compact zinc-immersion film was prepared on the substrate surface. A silvery-colored satin aluminum deposition was obtained on AZ31 from TMPAC-AlCl3 using direct current plating.展开更多
Quantum mechanics and molecular dynamics are used to simulate guanidinium ionic liquids. Results show that the stronger interaction exists between guanidine cation and chlorine anion with interaction energy about 109....Quantum mechanics and molecular dynamics are used to simulate guanidinium ionic liquids. Results show that the stronger interaction exists between guanidine cation and chlorine anion with interaction energy about 109.216 kcal/mol. There are two types of spatial distribution for the title system: middle and top. Middle mode is a more stable conformation according to energy and geometric distribution. It is also verified by radial distribution function. The continuous increase of carbon dioxide (CO2) does not affect the structure of ionic liquids, but CO2 molecules are always captured by the cavity of ionic liquids.展开更多
Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structure- activity relationship...Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structure- activity relationship (QSAR) has been proven to be a quick and effective method to estimate the viscosity, melting points, and even toxicity of ILs. In this work, the LC50 values of 30 imidazolium-based ILs were determined with Caenorhabditis elegans as a model animal. Four suitable molecular descriptors were selected on the basis of genetic function approximation algorithm to construct a QSAR model with an R^2 value of 0.938. The predicted lgLC50 in this work are in agreement with the experimental values, indicating that the model has good stability and predictive ability. Our study provides a valuable model to predict the potential toxicity of ILs with different sub-structures to the environment and human health.展开更多
The synthesis of methylene diphenyl dimethylcarbamate (4,4'-MDC) from methyl N-phenyl carbonate (MPC) and formaldehyde (HCHO) was conducted in the presence of sulfonic acid-functionalized ionic liquids (ILs) ...The synthesis of methylene diphenyl dimethylcarbamate (4,4'-MDC) from methyl N-phenyl carbonate (MPC) and formaldehyde (HCHO) was conducted in the presence of sulfonic acid-functionalized ionic liquids (ILs) as dual solvent-catalyst. The influences of the kind of anion in the ionic liquids, reaction conditions and the recycle of the ionic liquid on 4,4'-MDC synthesis reaction were investigated. In addition, the acid strength of ILs was de-termined by the Hammett method with UV-visible spectroscopy, and the acid strength-catalytic activity relationship was correlated. The activity estimation results showed that [HSO3-bmim]CF3SO3 was the optimal dual solvent-catalyst. Under the suitable reaction conditions of 70℃, 40 min, molar ratio of nMPC/nHCHO= 10/1 and mass ratio of WILs/WMPC = 4.5/1, the yield of 4,4'-MDC based on HCHO was 89.9 % and the selectivity of 4,4'-MDC with respect to MPC was 74.9%. Besides, [HSO3-bmim]CF3SO3 was reused four times after being purified and no significant loss in the catalytic activity was observed.展开更多
Ionic liquids as green solvents have shown important application in the extraction and separation of nonferrous metals.The new application perspective,the important fundamental and the applied studies of the extractio...Ionic liquids as green solvents have shown important application in the extraction and separation of nonferrous metals.The new application perspective,the important fundamental and the applied studies of the extraction and separation of nonferrous metals in ionic liquids,including the dissolution and corrosion of metal and metal oxide,hydrometallurgy of chalcopyrite and metallic oxidized ore,and extraction and separation of metal ions,are introduced.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB3802600)the National Natural Science Foundation of China(22278396,22378392,22178344)+1 种基金the Youth Innovation Promotion Association CAS(Y2021022)the Open Research Fund of State Key Laboratory of Mesoscience and Engineering(MESO-23-D17)。
文摘Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs and reveal a peculiar structural transition behavior from order to disorder above a threshold thickness.This behavior can be explained by the variation of interfacial forces with increasing distance from the solid surface.Direct structural observation of different ILs highlights the influence of the ionic structure on the growth process.Notably,the length of the alkyl chain in the cation is found to be a determining factor for the ordering trend.Also,the thermal stability of surface-confined ILs is investigated in depth by controlling annealing treatments.It is found that the ordered monolayer ILs exhibit high robustness against high temperatures.Our findings provide new perspectives on the properties of surface-confined ILs and open up potential avenues for manipulating the structures of nanometer-thick IL films for various applications.
基金Project(52004062)supported by the National Natural Science Foundation of ChinaProject(2020-MS-084)supported by the Natural Science Foundation of Liaoning Province,ChinaProject(N2125014)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The electrochemical behavior of Al(Ⅲ)in urea-1-butyl-3-methylimidazolium chloride-aluminum chloride(urea-BMIC-AlCl_(3))ionic liquids,and the effect of potential and temperature on the characterization of cathode products,current efficiency and energy consumption of aluminum electrorefining have been investigated.Cyclic voltammetry showed that the electrochemical reduction of Al(Ⅲ)was a one-step three-electron-transfer irreversible reaction,and the electrochemical reaction was controlled by diffusion.The diffusion coefficient of Al(Ⅲ)in urea-BMIC-AlCl_(3)ionic liquids at 313 K was 1.94×10^(−7)cm^(2)/s.The 7075 aluminum alloy was used as an anode for electrorefining,and the cathode products were analyzed by XRD,SEM and EDS.The results from XRD analysis indicated that the main phase of the cathode products was aluminum.The results from SEM and EDS characterization revealed that the cathode product obtained by electrorefining−1.2 V(vs.Al)was dense and uniform,and the mass fraction of aluminum decreased from 99.61%to 99.10%as the experimental temperature increased from 313 K to 333 K.In this work,the optimum experimental conditions were−1.2 V(vs.Al)and 313 K.At this time,the cathode current efficiency was 97.80%,while the energy consumption was 3.72 kW·h/kg.
基金financially supported by the National Natural Science Foundation of China (Nos.22078135,21808092,21978119,22202088)。
文摘Porous ionic liquids have demonstrated excellent performance in the field of separation,attributed to their high specific surface area and efficient mass transfer.Herein,task-specific protic porous ionic liquids(PPILs)were prepared by employing a novel one-step coupling neutralization reaction strategy for extractive desulfurization.The single-extraction efficiency of PPILs reached 75.0%for dibenzothiophene.Moreover,adding aromatic hydrocarbon interferents resulted in a slight decrease in the extraction efficiency of PPILs(from 45.2%to 37.3%,37.9%,and 33.5%),indicating the excellent extraction selectivity of PPILs.The experimental measurements and density functional theory calculations reveal that the surface channels of porous structures can selectively capture dibenzothiophene by the stronger electrophilicity(Eint(HS surface channel/DBT)=-39.8 kcal mol^(-1)),and the multiple extraction sites of ion pairs can effectively enrich and transport dibenzothiophene from the oil phase into PPILs throughπ...π,C-H...πand hydrogen bonds interactions.Furthermore,this straightforward synthetic strategy can be employed in preparing porous liquids,offering new possibilities for synthesizing PPILs with tailored functionalities.
基金supported by the National Natural Science Foundation of China(nos.22168012 and 22208070)the Key Laboratory of Carbon-based Energy Molecular Chemical Utilization Technology in Guizhou Province(no.2023008)the Guizhou Province Outstanding Young Scientific and Technological Talents Program(no.YQK2023007).
文摘Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI/CuIIby mechanical ball milling method. This defective HKUST-1is embellished by functionalized ionic liquids as hydrophobic armor, making the hybrid HIL1@HKUST-1 exhibits outstanding water stability,remarkable SO_(2) adsorption (up to 5.71 mmol g^(-1)), and record-breaking selectivity (1070 for SO_(2)/CO_(2) and 31,515 for SO_(2)/N_(2)) at 25 ℃ and0.1 bar, even in wet conditions.
基金supported by the National Natural Science Foundation of China(22168002,22108070,21878078)the Natural Science Foundation of Guangxi Province(2020GXNSFAA159119)+2 种基金the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2021Z012)the Open Fund of the State Key Laboratory of Molecular Reaction Dynamics in DICP(SKLMRD-K202106)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)。
文摘Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions.
基金supported by the National Natural Science Foundation of China(No.51874221)the Open Foundation of Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials,Guangxi University(No.2022GXYSOF 11).
文摘To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interesting phenomena were observed in which EtOH exerted different effects on the flotation efficiency of two ILs with similar structures.When EtOH was used to dissolve 1-dodecyl-3-methylimidazolium chloride(C12[mim]Cl)and as a collector for pure quartz flotation tests at a concentration of 1×10^(−5)mol·L^(−1),quartz recovery increased from 23.77%to 77.91%compared with ILs dissolved in water.However,quartz recovery of 1-dodecyl-3-methylim-idazolium hexafluorophosphate(C12[mim]PF6)decreased from 60.45%to 24.52%under the same conditions.The conditional experi-ments under 1×10^(−5)mol·L^(−1)ILs for EtOH concentration and under 2vol%EtOH for ILs concentration confirmed this difference.After being affected by EtOH,the mixed ore flotation tests of quartz and hematite showed a decrease in the hematite concentrate grade and re-covery for the C12[mim]Cl collector,whereas the hematite concentrate grade and recovery for the C12[mim]PF6 collector increased.On the basis of these differences and observations of flotation foam,two-phase bubble observation tests were carried out.The EtOH promoted the foam height of two ILs during aeration.It accelerated static froth defoaming after aeration stopped,and the foam of C12[mim]PF6 de-foaming especially quickly.In the discussion of flotation tests and foam observation,an attempt was made to explain the reasons and mechanisms behind the diverse phenomena using the dynamic surface tension effect and solvation effect results from EtOH.The solva-tion effect was verified through Fourier transform infrared(FT-IR),X-ray photoelectron spectroscopy(XPS),and Zeta potential tests.Al-though EtOH affects the adsorption of ILs on the ore surface during flotation negatively,it holds an positive value of inhibiting foam mer-ging during flotation aeration and accelerating the defoaming of static foam.And induce more robust secondary enrichment in the mixed ore flotation of the C12[mim]PF6 collector,facilitating effective mixed ore separation even under inhibitor-free conditions.
基金supported by the National Natural Science Foundation of China(22125802,22078010).
文摘The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly.
基金funded by the National Natural Science Foundation of China(82273881 and 82304386)Guangdong Basic and Applied Basic Research Foundation(2022A1515110476)+1 种基金the Open Fund of Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology(GDKL202214)SUMC Scientiffc Research Initiation Grant(510858046 and 510858056).
文摘Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs;as novel solvents for improving the solubility of drugs in carriers;as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs;and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs.
基金supported by the National Natural Science Foundation of China(22008161)Sichuan Science and Technology Program(2022YFQ0037)。
文摘With the vigorous development of the electronics industry,the consumption of lithium continues to increase,and more lithium needs to be mined to meet the development of the industry.The content of lithium in the solution is much higher than that of minerals,but the interference of impurity ions increases the difficulty of extracting lithium ions.Therefore,we prepared an imidazole-based ionic liquid(1-butyl-3-methylImidazolium bis(trifluoromethyl sulfonyl)imide)(IL)for efficient lithium extraction from aqueous solutions by solvent extraction.Using an extraction consisting of 10%IL,85% tributyl phosphate(TBP),and 5% dichloroethane and an organic to aqueous phase ratio(O/A)of 2/1,over 64.23% of Li were extracted,and the extraction rate after five-stage extraction could reach more than 96%.The addition of ammonium ions to the solution inhibited the extraction of Ni,and the separation coefficient between lithium and nickel approached infinity,showing a very perfect separation effect.Fouriertransform infrared spectroscopy and slope methods were used to analyze the changes that occurred during extraction,revealing possible extraction mechanisms.In addition,the LiCl solution generated during the preparation of ionic liquids was mixed with the stripping solution,and the battery-grade lithium carbonate was prepared by Na_(2)CO_(3) precipitation,with a purity of 99.74%.This study provides an efficient and sustainable strategy for recovering lithium from the solution.
基金supported by the National Natural Science Foundation of China(22278202)the Natural Science Foundation of Jiangsu Province(BM2018007.BK20210185).
文摘The transformation of CO_(2)into high value-added product is a promising pathway for utilizing CO_(2).However,the process tends to require harsh reaction conditions owing to CO_(2)chemical inertness.Designing a high efficiency catalytic system with environmentally benign characteristic are important determinants.In this work,protic ionic liquids[TMG][2-OPy]were prepared via one-step neutralization between 1,1,3,3-tetramethylguanidine and 2-hydroxypyridine,applying to the domain of synthesizing quinzoline-2,4(1 H,3H)-diones from CO_(2)and 2-aminobenzontiles without any solvent or metal,achieving the yield of 97%at 90℃for 8 h under atmospheric.A series of substrates with good to acceptable yield were detected,revealing the generality and universality of the catalyst.Furthermore,the system could be facilely reused for at least six runs,retaining the yield of 94%.A preliminary kinetic equation is calculated with the activation energy of 68 kJ·mol^(-1),and a plausible reaction mechanism was put forward.This study highlights that the[TMG][2-OPy]enables to activate CO_(2)carboxylation efficiently.
基金financial support from the National Natural Science Foundation of China(22075094)the Fundamental Research Funds for the Central Universities。
文摘Metal halide perovskite solar cells(PSCs)have shown great potential to become the next generation of photovoltaic devices due to their simple fabrication techniques,low cost,and soaring power conversion efficiency(PCE).However,mismatched with the quickly updated PCEs,the improvement of device stability is challenging and still remains a critical hurdle in the path to commercialization.Recently,ionic liquids(ILs)have been found to play multiple roles in obtaining efficient and stable PSCs.These ILs usually consist of large organic cations and organic or inorganic anions,which have weak electrostatic attraction and are generally liquid at around 100℃.ILs are almost non-volatile,non-flammable,with high ionic conductivity and excellent thermal and electrochemical stability.The roles of ILs in PSCs vary with their composition,that is,the types of anions and cations.In this review,we summarize the roles of anions and cations in terms of precursor solutions,additives,perovskite/charge transport layer interface engineering,and charge transport layers.This article aims to set up a structure–property-stability-performance correlations conferred by the IL in PSC and provide assistance for the anion and cation selection for improving the quality of perovskite film,optimizing interface contact,reducing defect states,and improving charge extraction and transport characteristics.Finally,the application of IL in PSCs is discussed and prospected.
基金financially supported by the National Natural Science Foundation of China(21875265,22293015,22121002)。
文摘Phenol in waste water threatens human health and is difficultly to be decomposed by nature.Efficient degradation of high-loaded phenol in water under mild condition is still a great challenge.Herein,ionic liquids with tungstate anion were designed and prepared.It was found that dodecyltrimethylammonium tungstate could catalyzed degradation of phenol into gases and water thoroughly at 323 k in 8 h.Tungstate anion revealed good catalytic oxidative activity and long carbon chain group connecting with cation of ionic liquids enriched phenol around catalysts,which induced the complete degradation of phenol at mild conditions.Increasing the amounts of hydrogen peroxide benefited to the total degradation of phenol.In addition,the ionic liquid could be reused for its excellent thermal stability.Our work provided a different strategy to treat waste water containing phenol efficiently.
基金support from the National Natural Science Foundation of China(No.21808048 and U1704251)Training Plan for University's Young Backbone Teachers of Henan Province(2021GGJS121)+5 种基金Program for Science&Technology Innovation Talents in Universities of Henan Province(23HASTIT014)Postgraduate Education Reform and Quality Improvement Project of Henan Province(YJS2022KC22)Project funded by China Postdoctoral Science Foundation(No.2018M632782)Project funded by Postdoctoral Research Grant in Henan Province(No.001802030)Key Project of Science and Technology Program of Henan Province(No.222102230109,212102310330 and 182102210050)the Science Research Start-up Fund of Henan Institute of Science and Technology(No.2015031).
文摘Diphenyl carbonate(DPC)is one of the versatile carbonates,and is often used for the production of polycarbonates.In recent years,the catalytic synthesis of DPC has become an important topic but the development of a highly active metal-free catalyst is a great challenge.Herein,a series of ionic liquids-SBA-15 hybrid catalysts with different functional groups have been developed for the synthesis of DPC under solventfree condition,which are effective and clean instead of the metal-containing catalysts.It is found that in the presence of[SBA-15-IL-OH]Br catalyst,methyl phenyl carbonate(MPC)conversion of 80.5%along with 99.6%DPC selectivity is achieved,the TOF value is thrice higher than the best value reported by using transition metal-based catalysts.Moreover,the catalyst displays remarkable stability and recyclability.This work provides a new idea to design and prepare eco-friendly catalysts in a broad range of applications for the green synthesis of carbonates.
基金supported by the National Natural Science Foundation of China (Grant No.22278271)the Key Project of Education Department of Liaoning Province(Grant No.LZGD2020005)
文摘Metal-organic frameworks(MOFs)have attracted considerable research attention as a new type of porous material for catalytic applications.Herein,2,5-dihydroxyterephthalic acid was proposed to replace conventional terephthalic acid and reacted with chromic nitrate nonahydrate to synthesize a functional metal–organic framework(FMIL-101).This was then used to immobilize various compound ionic liquids to prepare three ionic liquids immobilized on FMIL-101 catalysts,namely,FMIL-101-[HeMIM]Cl/(ZnBr_(2))_(2),FMIL-101-[CeMIM]Cl/(ZnBr_(2))_(2),and FMIL-101-[AeMIM]Br/(ZnBr_(2))_(2).After characterization by Fourier-transform infrared spectroscopy,X-ray diffraction,ultraviolet spectroscopy,thermogravimetry,specific surface area analysis,and scanning electron microscopy,the catalysts were used to mediate cycloaddition reactions between carbon dioxide(CO_(2))and propylene oxide.The effects of reaction temperature,reaction pressure,reaction time,and catalyst dosage on the catalytic performance were investigated.The results revealed that the FMIL-101-supported CIL catalysts afforded the target product propylene carbonate with good catalytic performance and thermal stability.The optimal catalyst,FMIL-101-[CeMIM]Cl/(ZnBr_(2))_(2),displayed a propylene oxide conversion of 98.64%and a propylene carbonate selectivity of 96.63%at a reaction temperature of 110℃,a reaction pressure of 2.0 MPa,a catalyst dosage of 2.0%relative to propylene oxide,and a reaction time of 2.5 h.In addition,the conversion and selectivity of the catalyst decreased slightly after four cycles.Additionally,the catalyst decreased slightly in catalytic performance after being recycled four times.
文摘Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammonium room temperature ionic liquids with benzene as a co-solvent. The corrosion resistance of the as-deposited Al layers was evaluated in 3.5% NaCl solution by the electrochemical technologies. The Al depositions were characterized by scanning electron microscopy equipped with energy dispersion X-ray. The results show that the microstructures of the Al depositions have spherical equiaxed grains obtained at a high current density, and bulk grains at a low current density. The Al deposition obtained at 12.3 mA/cm2 has a smooth and compact surface. The electrochemical measurements indicate that the thicker Al deposition can more effectively protect the Mg substrate. The Al deposition with bulk grains hardly protects the AZ31 Mg substrate from corrosion owing to its porosity.
文摘It is difficult to directly electroplate Al on Mg alloys. The effects of pretreatment parameters on the corrosion resistance of films obtained on AZ31 Mg alloy surface were studied by using potentiodynamic polarization curves, to produce a compact interfacial layer as zinc-immersion deposition. After the substrate was pretreated under optimized conditions, aluminum was electrodeposited on AZ31 from TMPAC-AlCl3 room temperature ionic liquids. The depositions were characterized by scanning electron microscope equipped with energy dispersion X-ray. The results show that the traditional pretreatment of Mg alloys was successfully used for the Al-electroplating process from TMPAC-AlCl3 ionic liquids. The entire procedure includes alkaline cleaning, chemical pickling, surface activation (400 mL/L HF acid, 10 min), zinc-immersion (20 min) and anhydrous treatment. A relatively compact zinc-immersion film was prepared on the substrate surface. A silvery-colored satin aluminum deposition was obtained on AZ31 from TMPAC-AlCl3 using direct current plating.
基金ACKNOWLEDGMENTS This work was supported by the Open Project Program of Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan University of Science and Technology, China (No.E21104), the National Natural Science Foundation of China (No.21201062 and No.21172066), and the International Cooperation Project (No.2013DFG60060).
文摘Quantum mechanics and molecular dynamics are used to simulate guanidinium ionic liquids. Results show that the stronger interaction exists between guanidine cation and chlorine anion with interaction energy about 109.216 kcal/mol. There are two types of spatial distribution for the title system: middle and top. Middle mode is a more stable conformation according to energy and geometric distribution. It is also verified by radial distribution function. The continuous increase of carbon dioxide (CO2) does not affect the structure of ionic liquids, but CO2 molecules are always captured by the cavity of ionic liquids.
基金This work was supported by the National Natural Science Foundation of China (No.21477121), and the Fundamental Research Funds for the Central Universities for the support of this work. The numerical calculations were performed on the super computing system in the Supercomputing Center at the University of Science and Technology of China.
文摘Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structure- activity relationship (QSAR) has been proven to be a quick and effective method to estimate the viscosity, melting points, and even toxicity of ILs. In this work, the LC50 values of 30 imidazolium-based ILs were determined with Caenorhabditis elegans as a model animal. Four suitable molecular descriptors were selected on the basis of genetic function approximation algorithm to construct a QSAR model with an R^2 value of 0.938. The predicted lgLC50 in this work are in agreement with the experimental values, indicating that the model has good stability and predictive ability. Our study provides a valuable model to predict the potential toxicity of ILs with different sub-structures to the environment and human health.
基金Supported by the National Natural Science Foundation of China (20576025). the National Key Basic Project of China (2005CCA06100), the Science and Technological Research and Development Project of Hebei Province (07215602D) and the Natural Science Foundation of Hebei Province 032007000010).
文摘The synthesis of methylene diphenyl dimethylcarbamate (4,4'-MDC) from methyl N-phenyl carbonate (MPC) and formaldehyde (HCHO) was conducted in the presence of sulfonic acid-functionalized ionic liquids (ILs) as dual solvent-catalyst. The influences of the kind of anion in the ionic liquids, reaction conditions and the recycle of the ionic liquid on 4,4'-MDC synthesis reaction were investigated. In addition, the acid strength of ILs was de-termined by the Hammett method with UV-visible spectroscopy, and the acid strength-catalytic activity relationship was correlated. The activity estimation results showed that [HSO3-bmim]CF3SO3 was the optimal dual solvent-catalyst. Under the suitable reaction conditions of 70℃, 40 min, molar ratio of nMPC/nHCHO= 10/1 and mass ratio of WILs/WMPC = 4.5/1, the yield of 4,4'-MDC based on HCHO was 89.9 % and the selectivity of 4,4'-MDC with respect to MPC was 74.9%. Besides, [HSO3-bmim]CF3SO3 was reused four times after being purified and no significant loss in the catalytic activity was observed.
基金Project(50904031) supported by the National Natural Science Foundation of ChinaProject(2008E0049M) supported by the Natural Science Foundation of Yunnan Province,China+1 种基金Project(07Z40082) supported by the Science Foundation of the Education Department of Yunnan Province,ChinaProject(2007-16) supported by the Science Foundation of Kunming University of Science and Technology,China
文摘Ionic liquids as green solvents have shown important application in the extraction and separation of nonferrous metals.The new application perspective,the important fundamental and the applied studies of the extraction and separation of nonferrous metals in ionic liquids,including the dissolution and corrosion of metal and metal oxide,hydrometallurgy of chalcopyrite and metallic oxidized ore,and extraction and separation of metal ions,are introduced.