期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Nanoparticle-Decorated Ultrathin La2O3 Nanosheets as an Effcient Electrocatalysis for Oxygen Evolution Reactions 被引量:3
1
作者 Guangyuan Yan Yizhan Wang +7 位作者 Ziyi Zhang Yutao Dong Jingyu Wang Corey Carlos Pu Zhang Zhiqiang Cao Yanchao Mao Xudong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第4期41-52,共12页
Electrochemical catalysts for oxygen evolution reaction are a critical component for many renewable energy applications. To improve their catalytic kinetics and mass activity are essential for sustainable industrial a... Electrochemical catalysts for oxygen evolution reaction are a critical component for many renewable energy applications. To improve their catalytic kinetics and mass activity are essential for sustainable industrial applications. Here, we report a rare-earth metal-based oxide electrocatalyst comprised of ultrathin amorphous La2O3 nanosheets hybridized with uniform La2O3 nanoparticles(La2O3@NP-NS). Significantly improved OER performance is observed from the nanosheets with a nanometer-scale thickness. The as-synthesized 2.27-nm La2O3@NP-NS exhibits excellent catalytic kinetics with an overpotential of 310 mV at 10 m A cm^-2, a small Tafel slope of 43.1 mV dec^-1, and electrochemical impedance of 38 Ω. More importantly, due to the ultrasmall thickness, its mass activity, and turnover frequency reach as high as 6666.7 A g^-1 and 5.79 s^-1, respectively, at an overpotential of 310 mV. Such a high mass activity is more than three orders of magnitude higher than benchmark OER electrocatalysts, such as IrO2 and RuO2. This work presents a sustainable approach toward the development of highly e cient electrocatalysts with largely reduced mass loading of precious elements. 展开更多
关键词 Oxygen evolution reaction Multiphase hybrid Two-dimensional nanomaterials Rare-earth oxides ionic layer epitaxy
下载PDF
Ultrathin two-dimensional medium-entropy oxide as a highly efficient and stable electrocatalyst for oxygen evolution reaction
2
作者 Guangyuan Yan Tianlu Wang +3 位作者 Biwei Zhao Wenjing Gao Tong Wu Liming Ou 《Nano Research》 SCIE EI CSCD 2024年第4期2555-2562,共8页
Medium-entropy oxides(MEOs)with broad compositional tunability and entropy-driven structural stability,are receiving booming attention as a promising candidate for oxygen evolution reaction(OER)electrocatalysts.Meanwh... Medium-entropy oxides(MEOs)with broad compositional tunability and entropy-driven structural stability,are receiving booming attention as a promising candidate for oxygen evolution reaction(OER)electrocatalysts.Meanwhile,ultrathin two-dimensional(2D)nanostructure offers extremely large specific surface area and is therefore considered to be an ideal catalyst structure.However,it remains a grant challenge to synthesize ultrathin 2D MEOs due to distinct nucleation and growth kinetics of constituent multimetallic elements in 2D anisotropic systems.In this work,an ultrathin 2D MEO(MnFeCoNi)O was successfully synthesized by a facile and low-temperature ionic layer epitaxy method.Benefiting from multi-metal synergistic effects within ultrathin 2D nanostructure,this 2D MEO(MnFeCoNi)O revealed excellent OER electrocatalytic performance with a quite low overpotential of 117 mV at 10 mA·cm^(-2) and an impressive stability for 120 h continuous operation with only 6.9%decay.Especially,the extremely high mass activity(5584.3 A·g^(-1))was three orders of magnitude higher than benchmark RuO_(2)(3.4 A·g^(-1))at the same overpotential of 117 mV.This work opens up a new avenue for developing highly efficient and stable electrocatalysts by creating 2D nanostructured MEOs. 展开更多
关键词 medium-entropy oxide two-dimensional nanomaterials ionic layer epitaxy oxygen evolution reaction electrocatalysis
原文传递
In vitro study of enhanced photodynamic cancer cell killing effect by nanometer-thick gold nanosheets 被引量:2
3
作者 Ziyi Zhang Dalong Ni +7 位作者 Fei Wang Xin Yin Shreya Goel Lazarus NGerman Yizhan Wang Jun Li Weibo Cai Xudong Wang 《Nano Research》 SCIE EI CAS CSCD 2020年第12期3217-3223,共7页
Photodynamic therapy(PDT)by near-infrared(NIR)irradiation is a promising technique for treating various cancers.Here,we reported the development of free-standing wafer-scale Au nanosheets(NSs)that exhibited an impress... Photodynamic therapy(PDT)by near-infrared(NIR)irradiation is a promising technique for treating various cancers.Here,we reported the development of free-standing wafer-scale Au nanosheets(NSs)that exhibited an impressive PDT effect.The Au NSs were synthesized by ionic layer epitaxy at the air-water interface with a uniform thickness in the range from 2 to 8.5 nm.These Au NSs were found very effective in generating singlet oxygen under NIR irradiation.In vitro cellular study showed that the Au NSs had very low cytotoxicity and high PDT efficiency due to their uniform 2D morphology.Au NSs could kill cancer cells after 5 min NIR irradiation with little heat generation.This performance is comparable to using 10 times mass loading of Au nanoparticles(NPs).This work suggests that two-dimensional(2D)Au NSs could be a new type of biocompatible nanomaterial for PDT of cancer with an extraordinary photon conversion and cancer cell killing efficiency. 展开更多
关键词 gold nanosheet ionic layer epitaxy surface plasmon photodynamic effect cancer therapy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部