Electrochemical catalysts for oxygen evolution reaction are a critical component for many renewable energy applications. To improve their catalytic kinetics and mass activity are essential for sustainable industrial a...Electrochemical catalysts for oxygen evolution reaction are a critical component for many renewable energy applications. To improve their catalytic kinetics and mass activity are essential for sustainable industrial applications. Here, we report a rare-earth metal-based oxide electrocatalyst comprised of ultrathin amorphous La2O3 nanosheets hybridized with uniform La2O3 nanoparticles(La2O3@NP-NS). Significantly improved OER performance is observed from the nanosheets with a nanometer-scale thickness. The as-synthesized 2.27-nm La2O3@NP-NS exhibits excellent catalytic kinetics with an overpotential of 310 mV at 10 m A cm^-2, a small Tafel slope of 43.1 mV dec^-1, and electrochemical impedance of 38 Ω. More importantly, due to the ultrasmall thickness, its mass activity, and turnover frequency reach as high as 6666.7 A g^-1 and 5.79 s^-1, respectively, at an overpotential of 310 mV. Such a high mass activity is more than three orders of magnitude higher than benchmark OER electrocatalysts, such as IrO2 and RuO2. This work presents a sustainable approach toward the development of highly e cient electrocatalysts with largely reduced mass loading of precious elements.展开更多
Medium-entropy oxides(MEOs)with broad compositional tunability and entropy-driven structural stability,are receiving booming attention as a promising candidate for oxygen evolution reaction(OER)electrocatalysts.Meanwh...Medium-entropy oxides(MEOs)with broad compositional tunability and entropy-driven structural stability,are receiving booming attention as a promising candidate for oxygen evolution reaction(OER)electrocatalysts.Meanwhile,ultrathin two-dimensional(2D)nanostructure offers extremely large specific surface area and is therefore considered to be an ideal catalyst structure.However,it remains a grant challenge to synthesize ultrathin 2D MEOs due to distinct nucleation and growth kinetics of constituent multimetallic elements in 2D anisotropic systems.In this work,an ultrathin 2D MEO(MnFeCoNi)O was successfully synthesized by a facile and low-temperature ionic layer epitaxy method.Benefiting from multi-metal synergistic effects within ultrathin 2D nanostructure,this 2D MEO(MnFeCoNi)O revealed excellent OER electrocatalytic performance with a quite low overpotential of 117 mV at 10 mA·cm^(-2) and an impressive stability for 120 h continuous operation with only 6.9%decay.Especially,the extremely high mass activity(5584.3 A·g^(-1))was three orders of magnitude higher than benchmark RuO_(2)(3.4 A·g^(-1))at the same overpotential of 117 mV.This work opens up a new avenue for developing highly efficient and stable electrocatalysts by creating 2D nanostructured MEOs.展开更多
Photodynamic therapy(PDT)by near-infrared(NIR)irradiation is a promising technique for treating various cancers.Here,we reported the development of free-standing wafer-scale Au nanosheets(NSs)that exhibited an impress...Photodynamic therapy(PDT)by near-infrared(NIR)irradiation is a promising technique for treating various cancers.Here,we reported the development of free-standing wafer-scale Au nanosheets(NSs)that exhibited an impressive PDT effect.The Au NSs were synthesized by ionic layer epitaxy at the air-water interface with a uniform thickness in the range from 2 to 8.5 nm.These Au NSs were found very effective in generating singlet oxygen under NIR irradiation.In vitro cellular study showed that the Au NSs had very low cytotoxicity and high PDT efficiency due to their uniform 2D morphology.Au NSs could kill cancer cells after 5 min NIR irradiation with little heat generation.This performance is comparable to using 10 times mass loading of Au nanoparticles(NPs).This work suggests that two-dimensional(2D)Au NSs could be a new type of biocompatible nanomaterial for PDT of cancer with an extraordinary photon conversion and cancer cell killing efficiency.展开更多
基金supported by Army Research O ce(ARO)under Grant W911NF-16-1-0198the National Science Foundation(DMR-1709025)China Scholarship Council
文摘Electrochemical catalysts for oxygen evolution reaction are a critical component for many renewable energy applications. To improve their catalytic kinetics and mass activity are essential for sustainable industrial applications. Here, we report a rare-earth metal-based oxide electrocatalyst comprised of ultrathin amorphous La2O3 nanosheets hybridized with uniform La2O3 nanoparticles(La2O3@NP-NS). Significantly improved OER performance is observed from the nanosheets with a nanometer-scale thickness. The as-synthesized 2.27-nm La2O3@NP-NS exhibits excellent catalytic kinetics with an overpotential of 310 mV at 10 m A cm^-2, a small Tafel slope of 43.1 mV dec^-1, and electrochemical impedance of 38 Ω. More importantly, due to the ultrasmall thickness, its mass activity, and turnover frequency reach as high as 6666.7 A g^-1 and 5.79 s^-1, respectively, at an overpotential of 310 mV. Such a high mass activity is more than three orders of magnitude higher than benchmark OER electrocatalysts, such as IrO2 and RuO2. This work presents a sustainable approach toward the development of highly e cient electrocatalysts with largely reduced mass loading of precious elements.
基金supported by the Fundamental Research Funds for the Central Universities(No.2021JBM019).
文摘Medium-entropy oxides(MEOs)with broad compositional tunability and entropy-driven structural stability,are receiving booming attention as a promising candidate for oxygen evolution reaction(OER)electrocatalysts.Meanwhile,ultrathin two-dimensional(2D)nanostructure offers extremely large specific surface area and is therefore considered to be an ideal catalyst structure.However,it remains a grant challenge to synthesize ultrathin 2D MEOs due to distinct nucleation and growth kinetics of constituent multimetallic elements in 2D anisotropic systems.In this work,an ultrathin 2D MEO(MnFeCoNi)O was successfully synthesized by a facile and low-temperature ionic layer epitaxy method.Benefiting from multi-metal synergistic effects within ultrathin 2D nanostructure,this 2D MEO(MnFeCoNi)O revealed excellent OER electrocatalytic performance with a quite low overpotential of 117 mV at 10 mA·cm^(-2) and an impressive stability for 120 h continuous operation with only 6.9%decay.Especially,the extremely high mass activity(5584.3 A·g^(-1))was three orders of magnitude higher than benchmark RuO_(2)(3.4 A·g^(-1))at the same overpotential of 117 mV.This work opens up a new avenue for developing highly efficient and stable electrocatalysts by creating 2D nanostructured MEOs.
基金This work was supported by the Army Research Office(No.W911NF-16-1-0198)the National Science Foundation(No.DMR-1709025)+2 种基金National Institutes of Health(Nos.R01EB0213360,1R21EB027857,and P30CA014520)Diffraction data was collected at ChemMatCARS Sector 15,which is principally supported by the Divisions of Chemistry and Materials Research,National Science Foundation,under grant number NSF/CHE-1834750Use of the Advanced Photon Source,an Office of Science User Facility operated for the U.S.Department of Energy(DOE)Office of Science by Argonne National Laboratory,was supported by the U.S.DOE(No.DEAC02-06CH11357).
文摘Photodynamic therapy(PDT)by near-infrared(NIR)irradiation is a promising technique for treating various cancers.Here,we reported the development of free-standing wafer-scale Au nanosheets(NSs)that exhibited an impressive PDT effect.The Au NSs were synthesized by ionic layer epitaxy at the air-water interface with a uniform thickness in the range from 2 to 8.5 nm.These Au NSs were found very effective in generating singlet oxygen under NIR irradiation.In vitro cellular study showed that the Au NSs had very low cytotoxicity and high PDT efficiency due to their uniform 2D morphology.Au NSs could kill cancer cells after 5 min NIR irradiation with little heat generation.This performance is comparable to using 10 times mass loading of Au nanoparticles(NPs).This work suggests that two-dimensional(2D)Au NSs could be a new type of biocompatible nanomaterial for PDT of cancer with an extraordinary photon conversion and cancer cell killing efficiency.