期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Oxygen vacancies with localized electrons direct a functionalized separator toward dendrite-free and high loading LiFePO_(4)for lithium metal batteries
1
作者 Qi An Qing Liu +6 位作者 Shimin Wang Lixiang Liu Han Wang Yongjiang Sun Lingyan Duan Genfu Zhao Hong Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期38-45,I0002,共9页
The pursuit of high energy density has promoted the development of high-performance lithium metal batteries(LMBs).However,the underestimated but non-negligible dendrites of Li anode have been observed to shorten batte... The pursuit of high energy density has promoted the development of high-performance lithium metal batteries(LMBs).However,the underestimated but non-negligible dendrites of Li anode have been observed to shorten battery lifespan.Herein,a composite separator(TiO_(2-x)@PP),in which TiO_(2)with electron-localized oxygen vacancies(TiO_(2-x))is coated on a commercial PP separator,is fabricated to homogenize lithium ion transport and stabilize the lithium anode interface.With the utilization of TiO_(2-x)@PP separators,the symmetric lithium metal battery displays enhanced cycle stability over 800 h under a high current density of 8 m A cm^(-2).Moreover,the LMBs assembled with high-loading LiFePO_(4)(9.24 mg cm^(-2))deliver a stable cycling performance over 900 cycles at a rate of 0.5 C.Comprehensive theoretical studies based on density functional theory(DFT)further unveil the mechanism.The favorable TiO_(2-x)is beneficial for facilitating fast Li+migration and impeding anions transfer.In addressing the Li dendrite issues,the use of TiO_(2-x)@PP separator potentially provides a facile and attractive strategy for designing well-performing LMBs,which are expected to meet the application requirements of rechargeable batteries. 展开更多
关键词 Oxygen vacancy ionic transport regulation Dendrite-free Localized electrons High loading
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部