We perform the self-consistent calculations on the atomic electron affinity and ionization energy for the first-row atoms by means of our scheme. A striking feature of the present work is the variational method with t...We perform the self-consistent calculations on the atomic electron affinity and ionization energy for the first-row atoms by means of our scheme. A striking feature of the present work is the variational method with taking into account effects of the nonspherical distribution of electrons explicitly. Comparing the present results with those of the conventional spherical approximation, the systematical improvement can be found. This means that effects of the nonspherical distribution of electrons may play an essential role on the description of the atomic structures.展开更多
Geometric and electronic properties of Pdn–1Pb and Pdn (n≤8) clusters have been studied by using density functional theory with effective core potentials, focusing on the differences between mono- and bimetallic c...Geometric and electronic properties of Pdn–1Pb and Pdn (n≤8) clusters have been studied by using density functional theory with effective core potentials, focusing on the differences between mono- and bimetallic clusters. The average bond length of Pdn–1Pb (n≤8) bimetallic clusters is longer than that of pure palladium clusters except for n = 2 and 3. The most stable structure of Pdn–1Pb (n≤7) is the singlet where there is at least a Pd or Pb atom on its excited state. The energy gaps of Pd–Pb binary clusters are narrower than those of Pdn clusters, and then the chemical activity is strengthened when Pdn clusters are doped with Pb.展开更多
文摘We perform the self-consistent calculations on the atomic electron affinity and ionization energy for the first-row atoms by means of our scheme. A striking feature of the present work is the variational method with taking into account effects of the nonspherical distribution of electrons explicitly. Comparing the present results with those of the conventional spherical approximation, the systematical improvement can be found. This means that effects of the nonspherical distribution of electrons may play an essential role on the description of the atomic structures.
文摘Geometric and electronic properties of Pdn–1Pb and Pdn (n≤8) clusters have been studied by using density functional theory with effective core potentials, focusing on the differences between mono- and bimetallic clusters. The average bond length of Pdn–1Pb (n≤8) bimetallic clusters is longer than that of pure palladium clusters except for n = 2 and 3. The most stable structure of Pdn–1Pb (n≤7) is the singlet where there is at least a Pd or Pb atom on its excited state. The energy gaps of Pd–Pb binary clusters are narrower than those of Pdn clusters, and then the chemical activity is strengthened when Pdn clusters are doped with Pb.