The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of G...The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of GIM products in data-sparse regions is of paramount importance.In this study,measurements from the Crustal Movement Observation Network of China(CMONOC)are leveraged to evaluate the suitability of IGS-GIM products over China region in 2013-2014.The indices of mean error(ME),root mean square error(RMSE),and normalized RMSE(NRMSE)are then utilized to quantify the accuracy of IGS-GIM products.Results revealed distinct local time and latitudinal dependencies in IGS-GIM errors,with substantially high errors at nighttime(NRMSE:39%)and above 40°latitude(NRMSE:49%).Seasonal differences also emerged,with larger equinoctial deviations(NRMSE:33.5%)compared with summer(20%).A preliminary analysis implied that the irregular assimilation of sparse IGS observations,compounded by China’s distinct geomagnetic topology,may manifest as error variations.These results suggest that modeling based solely on IGS-GIM observations engenders inadequate representations across China and that a thorough examination would proffer the necessary foundation for advancing regional total electron content(TEC)constructions.展开更多
Suprathermal electrons are an important population of the Martian ionosphere, either produced by photoionization of atmospheric neutrals or supplied from the Solar Wind (SW). This study is dedicated to an in-depth inv...Suprathermal electrons are an important population of the Martian ionosphere, either produced by photoionization of atmospheric neutrals or supplied from the Solar Wind (SW). This study is dedicated to an in-depth investigation of the pitch angle distribution of suprathermal electrons at two representative energies, 19−55 eV and 124−356 eV, using the extensive measurements made by the Solar Wind Electron Analyzer on board the Mars Atmosphere and Volatile Evolution. Throughout the study, we focus on the overall degree of anisotropy, defined as the standard deviation of suprathermal electron intensity among different directions which is normalized by the mean omni-directional intensity. The available data reveal the following characteristics: (1) In general, low energy electrons are more isotropic than high energy electrons, and dayside electrons are more isotropic than nightside electrons;(2) On the dayside, the anisotropy increases with increasing altitude at low energies but remains roughly constant at high energies, whereas on the nightside, the anisotropy decreases with increasing altitude at all energies;(3) Electrons tend to be more isotropic in strongly magnetized regions than in weakly magnetized regions, especially on the nightside. These observations indicate that the anisotropy is a useful diagnostic of suprathermal electron transport, for which the conversion between the parallel and perpendicular momenta as required by the conservation of the first adiabatic invariant, along with the atmospheric absorption at low altitudes, are two crucial factors modulating the observed variation of the anisotropy. Our analysis also highlights the different roles on the observed anisotropy exerted by suprathermal electrons of different origins.展开更多
During the course of ionospheric heating experiments, researchers at the European Incoherent Scatter Scientific Association (EISCAT) observed an apparent electron density enhancement. The enhancement extended over a w...During the course of ionospheric heating experiments, researchers at the European Incoherent Scatter Scientific Association (EISCAT) observed an apparent electron density enhancement. The enhancement extended over a wide range of altitudes, above the reflection altitude of the high-frequency pump wave. However, whether this enhancement actually corresponds to a true enhancement in electron density remains an open question. When the dispersion relation of ion acoustic waves is followed, the frequency ratio of the enhanced ion line to the background ion line suggests that the profile of the effective ion mass may have remained unchanged. Furthermore, the solar radio flux and ion drift velocity indicate no significant changes in the ion species and their densities. In conclusion, the electron density enhancement observed at EISCAT should not, in fact, be considered a true enhancement.展开更多
Tweek atmospherics are extremely low frequency and very low frequency pulse signals with frequency dispersion characteristics that originate from lightning discharges and that propagate in the Earth–ionosphere wavegu...Tweek atmospherics are extremely low frequency and very low frequency pulse signals with frequency dispersion characteristics that originate from lightning discharges and that propagate in the Earth–ionosphere waveguide over long distances.In this study,we developed an automatic method to recognize tweek atmospherics and diagnose the lower ionosphere based on the machine learning method.The differences(automatic−manual)in each ionosphere parameter between the automatic method and the manual method were−0.07±2.73 km,0.03±0.92 cm^(−3),and 91±1,068 km for the ionospheric reflection height(h),equivalent electron densities at reflection heights(Ne),and propagation distance(d),respectively.Moreover,the automatic method is capable of recognizing higher harmonic tweek sferics.The evaluation results of the model suggest that the automatic method is a powerful tool for investigating the long-term variations in the lower ionosphere.展开更多
The ionosphere is the ionized part of the upper atmosphere of the Earth,which plays an important role in atmospheric electricity and forms the inner edge of the magnetosphere.It influences radio propagation significan...The ionosphere is the ionized part of the upper atmosphere of the Earth,which plays an important role in atmospheric electricity and forms the inner edge of the magnetosphere.It influences radio propagation significantly,such as the Global Navigation Satellite System(GNSS).Meanwhile,the GNSS is also an essential technique for sensing the variation of ionosphere.During the years of 2019—2023,a large number of Chinese geodesy scientists devoted much efforts to the geodesy related ionosphere.Due to the very limited length,the achievements are carried out from the following six aspects,including:①The ionospheric correction models for BDS and BDSBAS;②Real-time global ionospheric monitoring and modeling;③The ionospheric 2D and 3D modeling based on GNSS and LEO satellites;④The ionospheric prediction based on artificial intelligence;⑤The monitoring and mitigation of ionospheric disturbances for GNSS users;⑥The ionospheric related data products and classical applications.展开更多
On the basis of the solution of the space-time characteristic system by the method of geometric optics using symbolic calculations,analytical and numerical simulation of the propagation of the ordinary and extraordina...On the basis of the solution of the space-time characteristic system by the method of geometric optics using symbolic calculations,analytical and numerical simulation of the propagation of the ordinary and extraordinary radio waves in the conducting equatorial ionospheric plasma was made considering the anisotropy of plasma irregularities and non-stationary nature of propagation medium.Broadening of the spectrum and the displacement of its maximum contain velocity of a turbulent plasma flow and parameters characterizing anisotropic plasmonic structures.Statistical moments of both radio waves do not depend on the absorption sign and are valid for both active and absorptive random media.Temporal pulsations and conductivity of a turbulent ionospheric plasma have an influence on the evaluation of the spectrum-varying propagation distances travelling by these waves.The new double-humped effect in the temporal spectrum has been revealed for the ordinary wave varying anisotropy coefficient and dip angle of stretched plasmonic structures.From a theoretical point of view,the algorithms developed in this work allow effective modelling of the propagation of both radio signals in the equatorial conductive ionospheric plasma,considering the external magnetic field,inhomogeneities of electron density in-homogeneities,as well as non-stationary.展开更多
Recent ionospheric observations report anomalous total electron content (TEC) deviations prior strong earthquakes. We discuss common fetures of the pre-earthquake TEC disturbances on the basis of statistics covering 5...Recent ionospheric observations report anomalous total electron content (TEC) deviations prior strong earthquakes. We discuss common fetures of the pre-earthquake TEC disturbances on the basis of statistics covering 50 strong seismic events during 2005-2006. The F2-layer ionospheric plasma drift under action of the electric fields of seismic origin is proposed as the main reason of producing TEC anomalies. The origin of such electric fields is discussed in terms of the lithosphere-atmosphere-ionosphere coupling system. This theory is supported by numerical simulations using global Upper Atmosphere Model (UAM). UAM calculations show that the vertical electric current with the density of about 20 - 40 nA/m2 flowing between the Earth and ionosphere over an area of about 200 by 2000 km is required to produce the TEC disturbances with the amplitude of about 30% - 50% relatively to the non-disturbed conditions. Ionosphere responses on the variations of the latitudinal position, direction and configuration of the vertical electric currents have been investigated. We show that not only the vertical component of the ionospheric plasma drift but also horizontal components play an important role in producing pre-earthquake TEC disturbances.展开更多
Observation data recorded by the European Incoherent Scatter Scientific Association in TromsФ, Norway in August 2009 were analyzed to determine the heating effects in polar summer ionospheric modification experiments...Observation data recorded by the European Incoherent Scatter Scientific Association in TromsФ, Norway in August 2009 were analyzed to determine the heating effects in polar summer ionospheric modification experiments. There are two types of increases in electron temperature: large relative increases in a narrow range near 150 km and greater absolute increases in a wider range at 150-400 km. The percentage increase in temperature linearly increases with heating power, but the rate of increase decreases with increasing pump frequency. A clear two-dimensional distribution was found for the measurement made on August 15, and the beating effects are greater closer to the direction of the geomagnetic field. The heating effects obviously depend on the angle between the heating beam and geomagnetic field; as the angle increases, the heating effect decreases.展开更多
The factors affecting the reflection and transmission coefficient of the ionosphere have been analyzed.These factors include wave frequency,incident angle,geomagnetic inclination,electron density and collision frequen...The factors affecting the reflection and transmission coefficient of the ionosphere have been analyzed.These factors include wave frequency,incident angle,geomagnetic inclination,electron density and collision frequency in the ionosphere.The ionosphere refractive index is also analyzed.The ionosphere above 70 km is considered to be homogeneous and anisotropic,and the reflection and transmission coefficient matrix is calculated using matrix method.Simultaneously the Booker quartic equation is solved to get the refractive index in the ionosphere.The results show that when the wave frequency is higher,it is easier to penetrate into the ionosphere from its bottom boundary and the propagation attenuation in the ionosphere is smaller.TE(traverse electric) wave and TM(traverse magnetic) wave can both penetrate into the ionosphere with a small incident angle,while TE wave can hardly transmit into the ionosphere when the incident angle is large.The transmission coefficient decreases as the geomagnetic inclination increases.TE and TM wave cannot penetrate into the ionosphere at magnetic equator.When the electron collision frequency is higher,it is easier for VLF wave to penetrate into the ionosphere and the attenuation of ordinary wave is weaker,which may be caused by the energy transportation between the waves and the particles.The ordinary(O) wave experiences severer attenuation than extraordinary(X) wave,and X wave is a penetration mode whereas O wave is a non-penetration mode in the ionosphere.All the results indicate that VLF wave with higher frequency is easier to penetrate into the ionosphere and to be recorded by the satellites at high latitude.It is hard for ULF and the lower frequency VLF wave to transmit into the ionosphere directly for the severe reflection and attenuation.It may transmit into the ionosphere with a small incident angle due to the nonlinear effect,for example,the interaction between the waves and the particles or cross modulation,and then propagate along the whistle duct with small attenuation.This work may be a preliminary theoretical exploration for the future calculation on the response of ground based VLF artificial transmitter in the ionosphere and further study on the seismic ionosphere coupling model.展开更多
It has been proven that carrier smoothing and differential global positioning system (DGPS) are effective to improve the accuracy of pseudorange by reducing the noise in it and eliminating almost all the common mode...It has been proven that carrier smoothing and differential global positioning system (DGPS) are effective to improve the accuracy of pseudorange by reducing the noise in it and eliminating almost all the common mode errors between the ground station and user. However, another issue coming with local area augmentation system (LAAS) is how to find an adaptive smoothing window width to minimize the error on account of ionosphere delay and multipath. Based on the errors analysis in carrier smoothing process, a novel algorithm is formulated to design adaptive Hatch filter whose smoothing window width flexibly varies with the characteristic of ionosphere delay and multipath in the differential carrier smoothing process. By conducting the simulation in LAAS and after compared with traditional Hatch filers, it reveals that not only the accuracy of differential correction, but also the accuracy and the robustness of positioning results are significantly improved by using the designed adaptive Hatch filter.展开更多
Based on the case studies and statistical analysis of earthquake-related ionospheric disturbances mainly from DEMETER satellite, ground-based GPS and ionosounding data, this paper summarizes the statisw tical characte...Based on the case studies and statistical analysis of earthquake-related ionospheric disturbances mainly from DEMETER satellite, ground-based GPS and ionosounding data, this paper summarizes the statisw tical characteristics of earthquake-related ionospheric disturbances, including electromagnetic emissions, plasma perturbations and variation of energetic particle flux. According to the main results done by Chinese scientists, fusing with the existed study from global researches, seismo-ionospheric disturbances usually occurred a few days or hours before earthquake occurrence. Paralleling to these case studies, lithosphere-atmosphere-ionosphere (LAI) coupling mechanisms are checked and optimized. A thermo-electric model was proposed to explain the seismo-electromagnetic effects before earthquakes. A propagation model was put forward to explain the electromagnetic waves into the ionosphere. According to the requirement of earthquake prediction research, China seismo-electromagnetic satellite, the first space-based platform of Chinese earthquake stereoscopic observation system, is proposed and planned to launch at about the end of 2014. It focuses on checking the LAI model and distinguishing earthquake-related ionospheric disturbance. The preliminary design for the satellite will adopt CAST-2000 platform with eight payloads onboard. It is believed that the satellite will work together with the ground monitoring network to improve the capability to capture seismo-electromagnetic information, which is beneficial for earthquake monitoring and prediction researches.展开更多
Ionosphere is the most challenging part of Space Weather with its spatio-temporal variability and dispersive nature. Ionospheric models are very important in reducing positioning error in GNSS system.International Ref...Ionosphere is the most challenging part of Space Weather with its spatio-temporal variability and dispersive nature. Ionospheric models are very important in reducing positioning error in GNSS system.International Reference Ionosphere(IRI) is an empirical, deterministic and climatic model of ionosphere up to 2000 km in height. Recently, IRI Extended to Plasmasphere(IRI-Plas) model has been developed to extend the interest region of IRI to the GPS orbital height of 20,000 km. Both IRI and IRI-Plas provide ionospheric parameters such as electron density, electron and ion temperatures according to their height profiles. In order to update the model to current ionospheric conditions, IRI-Plas can input F2 layer critical frequency(foF2), maximum ionization height(hmF2), and also Total Electron Content(TEC).Online IRI-Plas is developed for the ionospheric community to run multiple tasks at various locations,dates and times with optional foF2, hmF2 and TEC inputs in a user-friendly manner. In this paper, we are going to present the capabilities of the Online IRI-Plas service and provide some comparisons between IRI-Plas outputs and ionosonde measurements. The comparison between online IRI-Plas foF2 outputs and ionosonde foF2 measurements indicates that the model with TEC input can significantly improve the representation of the current ionospheric state, which is very successful especially in the geomagnetically disturbed days.展开更多
The Martian ionosphere is produced by a number of controlling processes, including solar extreme ultraviolet radiation (EUV) and X-ray ionization, impact ionization by precipitating electrons, and day-to-night transpo...The Martian ionosphere is produced by a number of controlling processes, including solar extreme ultraviolet radiation (EUV) and X-ray ionization, impact ionization by precipitating electrons, and day-to-night transport. This study investigates the structural variability of the Martian ionosphere with the aid of the radio occultation (RO) experiments made on board the recent Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft. On the dayside, the RO electron density profiles are described by the superposition of two Chapman models, representing the contributions from both the primary layer and the low-altitude secondary layer. The inferred subsolar peak electron densities and altitudes are 1.24×10^5 cm^-3 and 127 km for the former, and 4.28×10^4 cm^-3 and 97 km for the latter, respectively, in general agreement with previous results appropriate for the low solar activity conditions. Our results strengthen the role of solar EUV and X-ray ionization as the driving source of plasma on the dayside of Mars. Beyond the terminator, a systematic decline in ionospheric total electron content is revealed by the MAVEN RO measurements made from the terminator crossing up to a solar zenith angle of 120°. Such a trend is indicative of day-to-night plasma transport as an important source for the nightside Martian ionosphere.展开更多
The temporal distribution characteristics of COSMIC occultation data are analyzed in detail, and the limitations in earthquake-ionosphere anomaly detection caused by the temporal distribution characteristics of COSMIC...The temporal distribution characteristics of COSMIC occultation data are analyzed in detail, and the limitations in earthquake-ionosphere anomaly detection caused by the temporal distribution characteristics of COSMIC occultation data are discussed using the example of the Wenchuan earthquake. The results demonstrate that there is no fixed temporal resolution for COSMIC occultation data when compared with other ionospheric observation techniques. Therefore, occultation data cannot currently be independently utilized in research studies but can only be used as a complement to other ionospheric observation techniques for applications with high temporal resolution demands, such as earthquake-ionosphere anomaly detection.展开更多
An important population of the dayside Martian ionosphere are photoelectrons that are produced by solar Extreme Ultraviolet and X-ray ionization of atmospheric neutrals.A typical photoelectron energy spectrum is chara...An important population of the dayside Martian ionosphere are photoelectrons that are produced by solar Extreme Ultraviolet and X-ray ionization of atmospheric neutrals.A typical photoelectron energy spectrum is characterized by a distinctive peak near 27 eV related to the strong solar HeⅡ emission line at 30.4 nm,and an additional peak near 500 eV related to O Auger ionization.In this study,the extensive measurements made by the Solar Wind Electron Analyzer on board the recent Mars Atmosphere and Volatile Evolution spacecraft are analyzed and found to verify the scenario that Martian ionosphere photoelectrons are driven by solar radiation.We report that the photoelectron intensities at the centers of both peaks increase steadily with increasing solar ionizing flux below 90 nm and that the observed solar cycle variation is substantially more prominent near the O Auger peak than near the HeⅡ peak.The latter observation is clearly driven by a larger variability in solar irradiance at shorter wavelengths.When the solar ionizing flux increases from 1 mW·m^-2 to 2.5 mW·m^-2,the photoelectron intensity increases by a factor of 3.2 at the HeⅡ peak and by a much larger factor of 10.5 at the O Auger peak,both within the optically thin regions of the Martian atmosphere.展开更多
Electron pitch angle distributions similar to bidirectional electron conics(BECs)have been reported at Mars in previous studies based on analyses of Mars Global Surveyor measurements.BEC distribution,also termed“butt...Electron pitch angle distributions similar to bidirectional electron conics(BECs)have been reported at Mars in previous studies based on analyses of Mars Global Surveyor measurements.BEC distribution,also termed“butterfly”distribution,presents a local minimum flux at 90°and a maximum flux before reaching the local loss cone.Previous studies have focused on 115 eV electrons that were produced mainly via solar wind electron impact ionization.Here using Solar Wind Electron Analyzer measurements made onboard the Mars Atmosphere and Volatile Evolution spacecraft,we identify 513 BEC events for 19-55 eV photoelectrons that were generated via photoionization only.Therefore,we are investigating electrons observed in regions well away from their source regions,to be distinguished from 115 eV electrons observed and produced in the same regions.We investigate the spatial distribution of the 19-55 eV BECs,revealing that they are more likely observed on the nightside as well as near strong crustal magnetic anomalies.We propose that the 19-55 eV photoelectron BECs are formed due to day-to-night transport and the magnetic mirror effect of photoelectrons moving along cross-terminator closed magnetic field lines.展开更多
A future Chinese mission is introduced to study the coupling between magnetosphere,ionosphere and thermosphere,i.e.the Magnetosphere-Ionosphere-Thermosphere Coupling Small Satellite Constellation(MIT).The scientific o...A future Chinese mission is introduced to study the coupling between magnetosphere,ionosphere and thermosphere,i.e.the Magnetosphere-Ionosphere-Thermosphere Coupling Small Satellite Constellation(MIT).The scientific objective of the mission is to focus on the outflow ions from the ionosphere to the magnetosphere.The constellation is planning to be composed of four small satellites;each small satellite has its own orbit and crosses the polar region at nearly the same time but at different altitude.The payloads onboard include particle detectors,electromagnetic payloads,auroral imagers and neutral atom imagers.With these payloads,the mission will be able to investigate acceleration mechanism of the upflow ions at different altitudes.Currently the orbits have been determined and prototypes of some have also been completed.Competition for next phase selection is scheduled in late 2015.展开更多
Theoretical model and solutions on power line harmonic radiation (PLHR) propagating in the ground, air, and anisotropic homogeneous ionosphere are presented, The theoretical model is verified by the PLHR events obse...Theoretical model and solutions on power line harmonic radiation (PLHR) propagating in the ground, air, and anisotropic homogeneous ionosphere are presented, The theoretical model is verified by the PLHR events observed by the DEMETER satellite. Some propagation characteristics of PLHR based on the model are obtained. This paper is bene- ficial to quantitatively interpret the formation mechanism of PLHR phenomenon.展开更多
Global Positioning System(GPS)Continuously Operating Reference Station(CORS)data analysis shows that the ionosphere’s electron density variability is linked to the deformation and stress accumulation in the Earth’s ...Global Positioning System(GPS)Continuously Operating Reference Station(CORS)data analysis shows that the ionosphere’s electron density variability is linked to the deformation and stress accumulation in the Earth’s crust.Anomalies in ionosphere total electron content(TEC)variability before 2021 M6.4 Sonitpur,Assam earthquake were detected using L1 and L2 GPS frequencies that showed three distinct abnormalities on April 3,9,10,2021.Pearson’s correlation coefficient(r)of TEC decreases in the CORS that lies away from the earthquake epicenter,indicating the possibilities of a positive relationship between TEC variability and earthquake epicenter.TEC concentration also decreases towards the epicenter within the earthquake preparation zone(EPZ).It is also observed that the Pearson’s correlation coefficient(r)of TEC decreases linearly near the EPZ.The study demonstrates the possibilities of determining the TEC anomalous zone in the ionosphere that coincides with the EPZ in the crustal rocks.The research indicated the possibilities of magnitude estimation of an impending earthquake based on the TEC anomalous zone in the ionosphere using closely spaced dense CORS network data.展开更多
Storm-time changes of main plasma parameters in the auroral ionosphere are analyzed for two intense storms occurring on May 15, 1997 and Sept. 25, 1998, with emphasis on their relationship to the solar wind dynamic pr...Storm-time changes of main plasma parameters in the auroral ionosphere are analyzed for two intense storms occurring on May 15, 1997 and Sept. 25, 1998, with emphasis on their relationship to the solar wind dynamic pressure and the IMFB z component. Strong hard particle precipitation occurred in the initial phase for both storms, associated with high solar wind dynamical pressure. During the recovery phase of the storms, some strong particle precipitation was neither concerned with high solar wind pressure nor southward IMFB z. Severe negative storm effects depicted by electron density depletion appeared in theF-region during the main and recovery phase of both storms, caused by intensive electric field-related strong Joule/frictional heating when IMF was largely southward. The ion temperature behaved similarly inE-andF-region, but the electron temperature did quite different, with a strong increase in the lowerE-region relating to plasma instability excited by strong electric field and a slight decrease in theF-region probably concerning with a cooling process. The field-aligned ion velocity was high and apparently anticorrelated with the northward component of the ion convection velocity.展开更多
基金the National Key R&D Program of China(Grant No.2022YFF0503702)the National Natural Science Foundation of China(Grant Nos.42074186,41831071,42004136,and 42274195)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20211036)the Specialized Research Fund for State Key Laboratories,and the University of Science and Technology of China Research Funds of the Double First-Class Initiative(Grant No.YD2080002013).
文摘The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of GIM products in data-sparse regions is of paramount importance.In this study,measurements from the Crustal Movement Observation Network of China(CMONOC)are leveraged to evaluate the suitability of IGS-GIM products over China region in 2013-2014.The indices of mean error(ME),root mean square error(RMSE),and normalized RMSE(NRMSE)are then utilized to quantify the accuracy of IGS-GIM products.Results revealed distinct local time and latitudinal dependencies in IGS-GIM errors,with substantially high errors at nighttime(NRMSE:39%)and above 40°latitude(NRMSE:49%).Seasonal differences also emerged,with larger equinoctial deviations(NRMSE:33.5%)compared with summer(20%).A preliminary analysis implied that the irregular assimilation of sparse IGS observations,compounded by China’s distinct geomagnetic topology,may manifest as error variations.These results suggest that modeling based solely on IGS-GIM observations engenders inadequate representations across China and that a thorough examination would proffer the necessary foundation for advancing regional total electron content(TEC)constructions.
基金the National Natural Science Foundation of China through grants 42241114,42274218 and 42304166the B-type Strategic Priority Program No.XDB41000000 funded by the Chinese Academy of Sciences+1 种基金the pre-research project on Civil Aerospace Technologies No.D020105 funded by China’s National Space Administration,the Guangdong Basic and Applied Research Foundation Project 2021A1515110271the Key Laboratory of Geospace Environment,Chinese Academy of Sciences,University of Science&Technology of China.
文摘Suprathermal electrons are an important population of the Martian ionosphere, either produced by photoionization of atmospheric neutrals or supplied from the Solar Wind (SW). This study is dedicated to an in-depth investigation of the pitch angle distribution of suprathermal electrons at two representative energies, 19−55 eV and 124−356 eV, using the extensive measurements made by the Solar Wind Electron Analyzer on board the Mars Atmosphere and Volatile Evolution. Throughout the study, we focus on the overall degree of anisotropy, defined as the standard deviation of suprathermal electron intensity among different directions which is normalized by the mean omni-directional intensity. The available data reveal the following characteristics: (1) In general, low energy electrons are more isotropic than high energy electrons, and dayside electrons are more isotropic than nightside electrons;(2) On the dayside, the anisotropy increases with increasing altitude at low energies but remains roughly constant at high energies, whereas on the nightside, the anisotropy decreases with increasing altitude at all energies;(3) Electrons tend to be more isotropic in strongly magnetized regions than in weakly magnetized regions, especially on the nightside. These observations indicate that the anisotropy is a useful diagnostic of suprathermal electron transport, for which the conversion between the parallel and perpendicular momenta as required by the conservation of the first adiabatic invariant, along with the atmospheric absorption at low altitudes, are two crucial factors modulating the observed variation of the anisotropy. Our analysis also highlights the different roles on the observed anisotropy exerted by suprathermal electrons of different origins.
基金supported by research organizations in China (CRIRP), Finland (SA), Japan (NIPR and STEL), Norway (NFR), Sweden (VR), and the United Kingdom (NERC)supported by the Taishan Scholars Project of Shandong Province (Grant No. ts20190968)supported by the foundation of National Key Laboratory of Electromagnetic Environment (Grant No. 6142403230303)
文摘During the course of ionospheric heating experiments, researchers at the European Incoherent Scatter Scientific Association (EISCAT) observed an apparent electron density enhancement. The enhancement extended over a wide range of altitudes, above the reflection altitude of the high-frequency pump wave. However, whether this enhancement actually corresponds to a true enhancement in electron density remains an open question. When the dispersion relation of ion acoustic waves is followed, the frequency ratio of the enhanced ion line to the background ion line suggests that the profile of the effective ion mass may have remained unchanged. Furthermore, the solar radio flux and ion drift velocity indicate no significant changes in the ion species and their densities. In conclusion, the electron density enhancement observed at EISCAT should not, in fact, be considered a true enhancement.
基金supported by the Chinese Academy of Sciences(CAS)Project of Stable Support for Youth Team in Basic Research Field(Grant No.YSRR-018)the National Key R&D Program of China(Grant No.2019YFC1510103)+1 种基金the National Natural Science Foundation of China(Grant Nos.41875006 and U1938115)the Chinese Meridian Project,and the International Partnership Program of CAS(Grant No.183311KYSB20200003).
文摘Tweek atmospherics are extremely low frequency and very low frequency pulse signals with frequency dispersion characteristics that originate from lightning discharges and that propagate in the Earth–ionosphere waveguide over long distances.In this study,we developed an automatic method to recognize tweek atmospherics and diagnose the lower ionosphere based on the machine learning method.The differences(automatic−manual)in each ionosphere parameter between the automatic method and the manual method were−0.07±2.73 km,0.03±0.92 cm^(−3),and 91±1,068 km for the ionospheric reflection height(h),equivalent electron densities at reflection heights(Ne),and propagation distance(d),respectively.Moreover,the automatic method is capable of recognizing higher harmonic tweek sferics.The evaluation results of the model suggest that the automatic method is a powerful tool for investigating the long-term variations in the lower ionosphere.
基金National Key R&D Program of China(No.2021YFB3901301)National Natural Science Foundation of China(Nos.42074043,42122026,42174038)Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y9E006033D)。
文摘The ionosphere is the ionized part of the upper atmosphere of the Earth,which plays an important role in atmospheric electricity and forms the inner edge of the magnetosphere.It influences radio propagation significantly,such as the Global Navigation Satellite System(GNSS).Meanwhile,the GNSS is also an essential technique for sensing the variation of ionosphere.During the years of 2019—2023,a large number of Chinese geodesy scientists devoted much efforts to the geodesy related ionosphere.Due to the very limited length,the achievements are carried out from the following six aspects,including:①The ionospheric correction models for BDS and BDSBAS;②Real-time global ionospheric monitoring and modeling;③The ionospheric 2D and 3D modeling based on GNSS and LEO satellites;④The ionospheric prediction based on artificial intelligence;⑤The monitoring and mitigation of ionospheric disturbances for GNSS users;⑥The ionospheric related data products and classical applications.
基金supported by Shota Rustaveli National Science Foundation of Georgia(SRNSFG),grant NFR-21-316“Investigation of the statistical characteristics of scattered electromagnetic waves in the terrestrial atmosphere and application”.
文摘On the basis of the solution of the space-time characteristic system by the method of geometric optics using symbolic calculations,analytical and numerical simulation of the propagation of the ordinary and extraordinary radio waves in the conducting equatorial ionospheric plasma was made considering the anisotropy of plasma irregularities and non-stationary nature of propagation medium.Broadening of the spectrum and the displacement of its maximum contain velocity of a turbulent plasma flow and parameters characterizing anisotropic plasmonic structures.Statistical moments of both radio waves do not depend on the absorption sign and are valid for both active and absorptive random media.Temporal pulsations and conductivity of a turbulent ionospheric plasma have an influence on the evaluation of the spectrum-varying propagation distances travelling by these waves.The new double-humped effect in the temporal spectrum has been revealed for the ordinary wave varying anisotropy coefficient and dip angle of stretched plasmonic structures.From a theoretical point of view,the algorithms developed in this work allow effective modelling of the propagation of both radio signals in the equatorial conductive ionospheric plasma,considering the external magnetic field,inhomogeneities of electron density in-homogeneities,as well as non-stationary.
文摘Recent ionospheric observations report anomalous total electron content (TEC) deviations prior strong earthquakes. We discuss common fetures of the pre-earthquake TEC disturbances on the basis of statistics covering 50 strong seismic events during 2005-2006. The F2-layer ionospheric plasma drift under action of the electric fields of seismic origin is proposed as the main reason of producing TEC anomalies. The origin of such electric fields is discussed in terms of the lithosphere-atmosphere-ionosphere coupling system. This theory is supported by numerical simulations using global Upper Atmosphere Model (UAM). UAM calculations show that the vertical electric current with the density of about 20 - 40 nA/m2 flowing between the Earth and ionosphere over an area of about 200 by 2000 km is required to produce the TEC disturbances with the amplitude of about 30% - 50% relatively to the non-disturbed conditions. Ionosphere responses on the variations of the latitudinal position, direction and configuration of the vertical electric currents have been investigated. We show that not only the vertical component of the ionospheric plasma drift but also horizontal components play an important role in producing pre-earthquake TEC disturbances.
基金supported by the National Natural Science Foundation of China (Grant nos. 40831062,41004065)National Supportive Project of Science and Technology of China (Grant no.2006BAB18B06)the State Key Laboratory of Space Weather (Grant no.08262DAA4S) and National Key Laboratory of Electromagnetic Environment
文摘Observation data recorded by the European Incoherent Scatter Scientific Association in TromsФ, Norway in August 2009 were analyzed to determine the heating effects in polar summer ionospheric modification experiments. There are two types of increases in electron temperature: large relative increases in a narrow range near 150 km and greater absolute increases in a wider range at 150-400 km. The percentage increase in temperature linearly increases with heating power, but the rate of increase decreases with increasing pump frequency. A clear two-dimensional distribution was found for the measurement made on August 15, and the beating effects are greater closer to the direction of the geomagnetic field. The heating effects obviously depend on the angle between the heating beam and geomagnetic field; as the angle increases, the heating effect decreases.
基金supported by Chinese National Science and Technology Support Pro-gram (2008BAC35B01)Basic Research Project from Institute of Earthquake Science,China Earthquake Ad-ministration (02092408)
文摘The factors affecting the reflection and transmission coefficient of the ionosphere have been analyzed.These factors include wave frequency,incident angle,geomagnetic inclination,electron density and collision frequency in the ionosphere.The ionosphere refractive index is also analyzed.The ionosphere above 70 km is considered to be homogeneous and anisotropic,and the reflection and transmission coefficient matrix is calculated using matrix method.Simultaneously the Booker quartic equation is solved to get the refractive index in the ionosphere.The results show that when the wave frequency is higher,it is easier to penetrate into the ionosphere from its bottom boundary and the propagation attenuation in the ionosphere is smaller.TE(traverse electric) wave and TM(traverse magnetic) wave can both penetrate into the ionosphere with a small incident angle,while TE wave can hardly transmit into the ionosphere when the incident angle is large.The transmission coefficient decreases as the geomagnetic inclination increases.TE and TM wave cannot penetrate into the ionosphere at magnetic equator.When the electron collision frequency is higher,it is easier for VLF wave to penetrate into the ionosphere and the attenuation of ordinary wave is weaker,which may be caused by the energy transportation between the waves and the particles.The ordinary(O) wave experiences severer attenuation than extraordinary(X) wave,and X wave is a penetration mode whereas O wave is a non-penetration mode in the ionosphere.All the results indicate that VLF wave with higher frequency is easier to penetrate into the ionosphere and to be recorded by the satellites at high latitude.It is hard for ULF and the lower frequency VLF wave to transmit into the ionosphere directly for the severe reflection and attenuation.It may transmit into the ionosphere with a small incident angle due to the nonlinear effect,for example,the interaction between the waves and the particles or cross modulation,and then propagate along the whistle duct with small attenuation.This work may be a preliminary theoretical exploration for the future calculation on the response of ground based VLF artificial transmitter in the ionosphere and further study on the seismic ionosphere coupling model.
基金supported by the National Natural Science Foundationof China (60974104)the National Defense Technical Foundation of Shipbuilding Industry (08J3.8.8)
文摘It has been proven that carrier smoothing and differential global positioning system (DGPS) are effective to improve the accuracy of pseudorange by reducing the noise in it and eliminating almost all the common mode errors between the ground station and user. However, another issue coming with local area augmentation system (LAAS) is how to find an adaptive smoothing window width to minimize the error on account of ionosphere delay and multipath. Based on the errors analysis in carrier smoothing process, a novel algorithm is formulated to design adaptive Hatch filter whose smoothing window width flexibly varies with the characteristic of ionosphere delay and multipath in the differential carrier smoothing process. By conducting the simulation in LAAS and after compared with traditional Hatch filers, it reveals that not only the accuracy of differential correction, but also the accuracy and the robustness of positioning results are significantly improved by using the designed adaptive Hatch filter.
基金funded by National Key Technology R&D Program in the 11th Five Year Plan of China (2008BAC35B00)the international cooperation project(2009DFA21480)
文摘Based on the case studies and statistical analysis of earthquake-related ionospheric disturbances mainly from DEMETER satellite, ground-based GPS and ionosounding data, this paper summarizes the statisw tical characteristics of earthquake-related ionospheric disturbances, including electromagnetic emissions, plasma perturbations and variation of energetic particle flux. According to the main results done by Chinese scientists, fusing with the existed study from global researches, seismo-ionospheric disturbances usually occurred a few days or hours before earthquake occurrence. Paralleling to these case studies, lithosphere-atmosphere-ionosphere (LAI) coupling mechanisms are checked and optimized. A thermo-electric model was proposed to explain the seismo-electromagnetic effects before earthquakes. A propagation model was put forward to explain the electromagnetic waves into the ionosphere. According to the requirement of earthquake prediction research, China seismo-electromagnetic satellite, the first space-based platform of Chinese earthquake stereoscopic observation system, is proposed and planned to launch at about the end of 2014. It focuses on checking the LAI model and distinguishing earthquake-related ionospheric disturbance. The preliminary design for the satellite will adopt CAST-2000 platform with eight payloads onboard. It is believed that the satellite will work together with the ground monitoring network to improve the capability to capture seismo-electromagnetic information, which is beneficial for earthquake monitoring and prediction researches.
文摘Ionosphere is the most challenging part of Space Weather with its spatio-temporal variability and dispersive nature. Ionospheric models are very important in reducing positioning error in GNSS system.International Reference Ionosphere(IRI) is an empirical, deterministic and climatic model of ionosphere up to 2000 km in height. Recently, IRI Extended to Plasmasphere(IRI-Plas) model has been developed to extend the interest region of IRI to the GPS orbital height of 20,000 km. Both IRI and IRI-Plas provide ionospheric parameters such as electron density, electron and ion temperatures according to their height profiles. In order to update the model to current ionospheric conditions, IRI-Plas can input F2 layer critical frequency(foF2), maximum ionization height(hmF2), and also Total Electron Content(TEC).Online IRI-Plas is developed for the ionospheric community to run multiple tasks at various locations,dates and times with optional foF2, hmF2 and TEC inputs in a user-friendly manner. In this paper, we are going to present the capabilities of the Online IRI-Plas service and provide some comparisons between IRI-Plas outputs and ionosonde measurements. The comparison between online IRI-Plas foF2 outputs and ionosonde foF2 measurements indicates that the model with TEC input can significantly improve the representation of the current ionospheric state, which is very successful especially in the geomagnetically disturbed days.
基金support from the National Natural Science Foundation of China (NSFC) through grant numbers 41525015 and 41774186
文摘The Martian ionosphere is produced by a number of controlling processes, including solar extreme ultraviolet radiation (EUV) and X-ray ionization, impact ionization by precipitating electrons, and day-to-night transport. This study investigates the structural variability of the Martian ionosphere with the aid of the radio occultation (RO) experiments made on board the recent Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft. On the dayside, the RO electron density profiles are described by the superposition of two Chapman models, representing the contributions from both the primary layer and the low-altitude secondary layer. The inferred subsolar peak electron densities and altitudes are 1.24×10^5 cm^-3 and 127 km for the former, and 4.28×10^4 cm^-3 and 97 km for the latter, respectively, in general agreement with previous results appropriate for the low solar activity conditions. Our results strengthen the role of solar EUV and X-ray ionization as the driving source of plasma on the dayside of Mars. Beyond the terminator, a systematic decline in ionospheric total electron content is revealed by the MAVEN RO measurements made from the terminator crossing up to a solar zenith angle of 120°. Such a trend is indicative of day-to-night plasma transport as an important source for the nightside Martian ionosphere.
基金supported by the National Science Foundation of China(41174029,41204028)Chinese Arctic and Antarctic Administration(20110205)the Fundamental Research Funds for the Central Universities(121001)
文摘The temporal distribution characteristics of COSMIC occultation data are analyzed in detail, and the limitations in earthquake-ionosphere anomaly detection caused by the temporal distribution characteristics of COSMIC occultation data are discussed using the example of the Wenchuan earthquake. The results demonstrate that there is no fixed temporal resolution for COSMIC occultation data when compared with other ionospheric observation techniques. Therefore, occultation data cannot currently be independently utilized in research studies but can only be used as a complement to other ionospheric observation techniques for applications with high temporal resolution demands, such as earthquake-ionosphere anomaly detection.
基金supported by the B-type Strategic Priority Program No.XDB41000000funded by the Chinese Academy of Sciences and the pre-research project on Civil Aerospace Technologies No.D020105funded by China's National Space Administration(CNSA).The authors also acknowledge support from the National Natural Science Foundation of China(NSFC)through grants 41904154,41525015,and 41774186.
文摘An important population of the dayside Martian ionosphere are photoelectrons that are produced by solar Extreme Ultraviolet and X-ray ionization of atmospheric neutrals.A typical photoelectron energy spectrum is characterized by a distinctive peak near 27 eV related to the strong solar HeⅡ emission line at 30.4 nm,and an additional peak near 500 eV related to O Auger ionization.In this study,the extensive measurements made by the Solar Wind Electron Analyzer on board the recent Mars Atmosphere and Volatile Evolution spacecraft are analyzed and found to verify the scenario that Martian ionosphere photoelectrons are driven by solar radiation.We report that the photoelectron intensities at the centers of both peaks increase steadily with increasing solar ionizing flux below 90 nm and that the observed solar cycle variation is substantially more prominent near the O Auger peak than near the HeⅡ peak.The latter observation is clearly driven by a larger variability in solar irradiance at shorter wavelengths.When the solar ionizing flux increases from 1 mW·m^-2 to 2.5 mW·m^-2,the photoelectron intensity increases by a factor of 3.2 at the HeⅡ peak and by a much larger factor of 10.5 at the O Auger peak,both within the optically thin regions of the Martian atmosphere.
基金supported by the B-type Strategic Priority Program No.XDB4100000funded by the Chinese Academy of Sciences and the pre-research projects on Civil Aerospace Technologies No.D020105 and D020104+1 种基金funded by China’s National Space Administrationthe National Natural Science Foundation of China through grants 41525015,41774186,and 41904154.
文摘Electron pitch angle distributions similar to bidirectional electron conics(BECs)have been reported at Mars in previous studies based on analyses of Mars Global Surveyor measurements.BEC distribution,also termed“butterfly”distribution,presents a local minimum flux at 90°and a maximum flux before reaching the local loss cone.Previous studies have focused on 115 eV electrons that were produced mainly via solar wind electron impact ionization.Here using Solar Wind Electron Analyzer measurements made onboard the Mars Atmosphere and Volatile Evolution spacecraft,we identify 513 BEC events for 19-55 eV photoelectrons that were generated via photoionization only.Therefore,we are investigating electrons observed in regions well away from their source regions,to be distinguished from 115 eV electrons observed and produced in the same regions.We investigate the spatial distribution of the 19-55 eV BECs,revealing that they are more likely observed on the nightside as well as near strong crustal magnetic anomalies.We propose that the 19-55 eV photoelectron BECs are formed due to day-to-night transport and the magnetic mirror effect of photoelectrons moving along cross-terminator closed magnetic field lines.
基金Supported by the Strategic Priority Research Program on Space Science(XDA04060201)of Chinese Academy of Sciencesthe Chinese Academy of Sciences"Hundred Talented Program"(Y32135A47S)+2 种基金the Chinese National Science Foundation(411774149)the Specialized Research Fund for State Key laboratory of Chinathe Chinese Academy of Sciences Visiting Fellowship for Researchers from Developing Countries
文摘A future Chinese mission is introduced to study the coupling between magnetosphere,ionosphere and thermosphere,i.e.the Magnetosphere-Ionosphere-Thermosphere Coupling Small Satellite Constellation(MIT).The scientific objective of the mission is to focus on the outflow ions from the ionosphere to the magnetosphere.The constellation is planning to be composed of four small satellites;each small satellite has its own orbit and crosses the polar region at nearly the same time but at different altitude.The payloads onboard include particle detectors,electromagnetic payloads,auroral imagers and neutral atom imagers.With these payloads,the mission will be able to investigate acceleration mechanism of the upflow ions at different altitudes.Currently the orbits have been determined and prototypes of some have also been completed.Competition for next phase selection is scheduled in late 2015.
基金Project supported by the National Natural Science Foundation of China(Grant No.51207006)the Natural Science Foundation of Beijing,China(Grant No.3123038)
文摘Theoretical model and solutions on power line harmonic radiation (PLHR) propagating in the ground, air, and anisotropic homogeneous ionosphere are presented, The theoretical model is verified by the PLHR events observed by the DEMETER satellite. Some propagation characteristics of PLHR based on the model are obtained. This paper is bene- ficial to quantitatively interpret the formation mechanism of PLHR phenomenon.
文摘Global Positioning System(GPS)Continuously Operating Reference Station(CORS)data analysis shows that the ionosphere’s electron density variability is linked to the deformation and stress accumulation in the Earth’s crust.Anomalies in ionosphere total electron content(TEC)variability before 2021 M6.4 Sonitpur,Assam earthquake were detected using L1 and L2 GPS frequencies that showed three distinct abnormalities on April 3,9,10,2021.Pearson’s correlation coefficient(r)of TEC decreases in the CORS that lies away from the earthquake epicenter,indicating the possibilities of a positive relationship between TEC variability and earthquake epicenter.TEC concentration also decreases towards the epicenter within the earthquake preparation zone(EPZ).It is also observed that the Pearson’s correlation coefficient(r)of TEC decreases linearly near the EPZ.The study demonstrates the possibilities of determining the TEC anomalous zone in the ionosphere that coincides with the EPZ in the crustal rocks.The research indicated the possibilities of magnitude estimation of an impending earthquake based on the TEC anomalous zone in the ionosphere using closely spaced dense CORS network data.
基金Supported by the National Natural Science Foundation of China!(496 74241)the Research Fund for the DoctoralProgram of High
文摘Storm-time changes of main plasma parameters in the auroral ionosphere are analyzed for two intense storms occurring on May 15, 1997 and Sept. 25, 1998, with emphasis on their relationship to the solar wind dynamic pressure and the IMFB z component. Strong hard particle precipitation occurred in the initial phase for both storms, associated with high solar wind dynamical pressure. During the recovery phase of the storms, some strong particle precipitation was neither concerned with high solar wind pressure nor southward IMFB z. Severe negative storm effects depicted by electron density depletion appeared in theF-region during the main and recovery phase of both storms, caused by intensive electric field-related strong Joule/frictional heating when IMF was largely southward. The ion temperature behaved similarly inE-andF-region, but the electron temperature did quite different, with a strong increase in the lowerE-region relating to plasma instability excited by strong electric field and a slight decrease in theF-region probably concerning with a cooling process. The field-aligned ion velocity was high and apparently anticorrelated with the northward component of the ion convection velocity.