On the basis of the analysis of the system sounding principle, this paper introduced a new type of ionospheric oblique backscattering sound system, which is based on the pseudo- ran- dom noise phase modulated pulse co...On the basis of the analysis of the system sounding principle, this paper introduced a new type of ionospheric oblique backscattering sound system, which is based on the pseudo- ran- dom noise phase modulated pulse compression. According to the high requirements of real-time and a large amount of computation and echo characteristics, a high-speed real-time signal processing system was established and the design of system hardware and software was focused on. The sounding results indicate that the system is equipped to handle the data fast and has a high degree of software features. It is of great significance for the realization of fast, real-time ionospheric sounding means.展开更多
This paper describes the construction of a one-dimensional time-dependent theoretical ionospheric model, which is based on numerical solution of continuity and momentum equations for , and NO<SUP>+</SUP>. ...This paper describes the construction of a one-dimensional time-dependent theoretical ionospheric model, which is based on numerical solution of continuity and momentum equations for , and NO<SUP>+</SUP>. The model is designed to have an option to incorporate the observational ionospheric characteristic parameters into the numerical model to indirectly determine the upper boundary condition when solving the transport equations of O<SUP>+</SUP>. A preliminary simulation result of the model when used to simulate the ionosphere during April 18 ~ May 10, 1998, which includes both quiet and disturbed periods, showed that the model constructed is able to reproduce the observational results reasonably well both for quiet and disturbed periods.展开更多
It has been more than 30 years since the first Chinese Antarctic Expedition took place. Polar upper atmospheric observations started at this time. First began at Great Wall Station and then at Zhongshan Station in Ant...It has been more than 30 years since the first Chinese Antarctic Expedition took place. Polar upper atmospheric observations started at this time. First began at Great Wall Station and then at Zhongshan Station in Antarctica, and later in the Arctic at Yellow River Station, Kjell Henriksen Observatory on Svalbard, and at the China-Iceland Joint Aurora Observatory in Iceland. In this paper, we reviewed the advances in polar upper atmosphere physics (UAP) based on the Chinese national Arctic and Antarctic research over the last five years. These included newly deployed observatories and research instruments in the Arctic and Antarctic; and new research findings, from grotmd-based observations, about polar ionosphere dynamics, aurora and particle precipitation, polar plasma convection, geomagnetic pulsations and space plasma waves, space weather in the polar regions, simulations of the polar ionosphere-magnetosphere. In conclusion, suggestions were made for future polar upper atmosphere physics research in China.展开更多
The Chinese Antarctic Great Wall, Zhongshan, Kunlun and Arctic Yellow River stations have unique geographical locations, well suited to carry out polar upper atmospheric observations. This paper reviews the tremendous...The Chinese Antarctic Great Wall, Zhongshan, Kunlun and Arctic Yellow River stations have unique geographical locations, well suited to carry out polar upper atmospheric observations. This paper reviews the tremendous history of nearly 30 years of Chinese polar expeditions and major progress in polar upper atmospheric physics research. This includes the polar upper atmospheric physics conjugate observation system at Zhongshan Station in the Antarctic and Yellow River Station in the Arctic, and original research achievements in polar ionospheric fields, aurora and particle precipitation, the polar current system, polar plasma convection, geomagnetic pulsations and space plasma waves, inter-hemispheric comparisons of the space environment, space weather in polar regions, power spectrum of the incoherent scatter radar, ionospheric heating experiments and polar meso- spheric summer echoes, polar ionosphere-magnetosphere numerical simulation and others. Finally, prospects for Chinese polar upper atmospheric physics research are outlined.展开更多
The ionospheric oblique backscattering sounding system can not only be used to detect the state of the ionosphere and the condition of high frequency channel in real time, but also be used for over-the-horizon soundin...The ionospheric oblique backscattering sounding system can not only be used to detect the state of the ionosphere and the condition of high frequency channel in real time, but also be used for over-the-horizon sounding. Therefore, it has a very high military and civil value. For the characteristics of ionospheric oblique backscattering sounding, such as long sounding distance, wake echo, strong background noise, slow moving target, etc., a hardware platform of ionospheric oblique backscattering sounding system is designed. This platform adopts the technology of software radio and is designed as a new kind of general purpose, modularized, software-based ionosonde that is based on the VXI (Versa module eurocard eXtensions for Instrumentation) bus. This hardware platform has been successfully used in actual ionospheric oblique backscattering sounding, and the experimental results demonstrate that this system can satisfy the requirements.展开更多
基金Supported by the National Natural Science Foundation of China (40474066)
文摘On the basis of the analysis of the system sounding principle, this paper introduced a new type of ionospheric oblique backscattering sound system, which is based on the pseudo- ran- dom noise phase modulated pulse compression. According to the high requirements of real-time and a large amount of computation and echo characteristics, a high-speed real-time signal processing system was established and the design of system hardware and software was focused on. The sounding results indicate that the system is equipped to handle the data fast and has a high degree of software features. It is of great significance for the realization of fast, real-time ionospheric sounding means.
文摘This paper describes the construction of a one-dimensional time-dependent theoretical ionospheric model, which is based on numerical solution of continuity and momentum equations for , and NO<SUP>+</SUP>. The model is designed to have an option to incorporate the observational ionospheric characteristic parameters into the numerical model to indirectly determine the upper boundary condition when solving the transport equations of O<SUP>+</SUP>. A preliminary simulation result of the model when used to simulate the ionosphere during April 18 ~ May 10, 1998, which includes both quiet and disturbed periods, showed that the model constructed is able to reproduce the observational results reasonably well both for quiet and disturbed periods.
基金supported by the Chinese Polar Environment Comprehensive Investigation and Assessment Programs (Grant nos. CHINARE 2017-04-01, and 2017-02-04)National Natural Science Foundation of China (Grant nos. 41274164, 41374159, 41431072, and 41274148)+1 种基金Pudong Development of Science and Technology Program (Grant no. Pkj2013-z01)Top-Notch Young Talents Program of China
文摘It has been more than 30 years since the first Chinese Antarctic Expedition took place. Polar upper atmospheric observations started at this time. First began at Great Wall Station and then at Zhongshan Station in Antarctica, and later in the Arctic at Yellow River Station, Kjell Henriksen Observatory on Svalbard, and at the China-Iceland Joint Aurora Observatory in Iceland. In this paper, we reviewed the advances in polar upper atmosphere physics (UAP) based on the Chinese national Arctic and Antarctic research over the last five years. These included newly deployed observatories and research instruments in the Arctic and Antarctic; and new research findings, from grotmd-based observations, about polar ionosphere dynamics, aurora and particle precipitation, polar plasma convection, geomagnetic pulsations and space plasma waves, space weather in the polar regions, simulations of the polar ionosphere-magnetosphere. In conclusion, suggestions were made for future polar upper atmosphere physics research in China.
文摘The Chinese Antarctic Great Wall, Zhongshan, Kunlun and Arctic Yellow River stations have unique geographical locations, well suited to carry out polar upper atmospheric observations. This paper reviews the tremendous history of nearly 30 years of Chinese polar expeditions and major progress in polar upper atmospheric physics research. This includes the polar upper atmospheric physics conjugate observation system at Zhongshan Station in the Antarctic and Yellow River Station in the Arctic, and original research achievements in polar ionospheric fields, aurora and particle precipitation, the polar current system, polar plasma convection, geomagnetic pulsations and space plasma waves, inter-hemispheric comparisons of the space environment, space weather in polar regions, power spectrum of the incoherent scatter radar, ionospheric heating experiments and polar meso- spheric summer echoes, polar ionosphere-magnetosphere numerical simulation and others. Finally, prospects for Chinese polar upper atmospheric physics research are outlined.
基金Supported by the National Natural Science Foundation of China (40474066)
文摘The ionospheric oblique backscattering sounding system can not only be used to detect the state of the ionosphere and the condition of high frequency channel in real time, but also be used for over-the-horizon sounding. Therefore, it has a very high military and civil value. For the characteristics of ionospheric oblique backscattering sounding, such as long sounding distance, wake echo, strong background noise, slow moving target, etc., a hardware platform of ionospheric oblique backscattering sounding system is designed. This platform adopts the technology of software radio and is designed as a new kind of general purpose, modularized, software-based ionosonde that is based on the VXI (Versa module eurocard eXtensions for Instrumentation) bus. This hardware platform has been successfully used in actual ionospheric oblique backscattering sounding, and the experimental results demonstrate that this system can satisfy the requirements.