Interfacial properties between perovskite layers and metal electrodes play a crucial role in the device performance and the long-term stability of perovskite solar cells.Here,we report a comprehensive study of the int...Interfacial properties between perovskite layers and metal electrodes play a crucial role in the device performance and the long-term stability of perovskite solar cells.Here,we report a comprehensive study of the interfacial degradation and ion migration at the interface between CH3NH3PbI3 perovskite layer and Ag electrode.Using in situ photoemission spectroscopy measurements,we found that the Ag electrode could induce the degradation of perovskite layers,leading to the formation of PbI2 and AgI species and the reduction of Pb^2+ions to metallic Pb species at the interface.The unconventional enhancement of the intensities of I 3d spectra provides direct experimental evidences for the migration of iodide ions from CH3NH3PbI3 subsurface to Ag electrode.Moreover,the contact of Ag electrode and perovskite layers induces an interfacial dipole of 0.3 eV at CH3NH3PbI3/Ag interfaces,which may further facilitate iodide ion diffusion,resulting in the decomposition of perovskite layers and the corrosion of Ag electrode.展开更多
Bauxite residue,a highly saline solid waste produced from digestion of bauxite for alumina production,is hazardous to the environment and restricts vegetation establishment in bauxite residue disposal areas.A novel wa...Bauxite residue,a highly saline solid waste produced from digestion of bauxite for alumina production,is hazardous to the environment and restricts vegetation establishment in bauxite residue disposal areas.A novel water leaching process proposed here was used to investigate the dynamic migration and vertical distribution of saline ions in bauxite residue.The results show that water leaching significantly reduced the salinity of bauxite residue,leaching both saline cations Na+,K+,Ca2+and anions CO32-,SO42-,HCO3-.Na+and K+migrated from 40-50 to 20-30 cm of the column,presenting a high migration capacity.The migration capacity of Ca2+was lower and accumulated at 30-40 cm of the column.CO32-initially distributed at 20-30 cm of the column,subsequently transported to 30-40 cm of the column,and finally returned to 20-30 cm of the column along with evaporation.SO42-was originally distributed at 40-50 cm,but finally migrated to 20-30 cm of the column.Nevertheless,HCO3-remained at the bottom of the column,and its migratory was less affected by evaporation.展开更多
Metal halide perovskites have recently emerged as promising candidates for the next generation of X-ray detectors due to their excellent optoelectronic properties.Especially,two-dimensional(2D)perovskites afford many ...Metal halide perovskites have recently emerged as promising candidates for the next generation of X-ray detectors due to their excellent optoelectronic properties.Especially,two-dimensional(2D)perovskites afford many distinct properties,including remarkable structural diversity,high generation energy,and balanced large exciton binding energy.With the advantages of 2D materials and perovskites,it successfully reduces the decomposition and phase transition of perovskite and effectively suppresses ion migration.Meanwhile,the existence of a high hydrophobic spacer can block water molecules,thus making 2D perovskite obtain excellent stability.All of these advantages have attracted much attention in the field of X-ray detection.This review introduces the classification of 2D halide perovskites,summarizes the synthesis technology and performance characteristics of 2D perovskite X-ray direct detector,and briefly discusses the application of 2D perovskite in scintillators.Finally,this review also emphasizes the key challenges faced by 2D perovskite X-ray detectors in practical application and presents our views on its future development.展开更多
Benefiting from the excellent properties such as high photoluminescence quantum yield(PLQY), wide gamut range,and narrow emission linewidth, as well as low-temperature processability, metal halide perovskite quantum d...Benefiting from the excellent properties such as high photoluminescence quantum yield(PLQY), wide gamut range,and narrow emission linewidth, as well as low-temperature processability, metal halide perovskite quantum dots(QDs)have attracted wide attention from researchers. Despite tremendous progress has been made during the past several years,the commercialization of perovskite QDs-based LEDs(PeQLEDs) is still plagued by the instability. The ion migration in halide perovskites is recognized as the key factor causing the performance degradation of PeQLEDs. In this review, the elements species of ion migration, the effects of ion migration on device performance and stability, and effective strategies to hinder/mitigate ion migration in PeQLEDs are successively discussed. Finally, the forward insights on the future research are highlighted.展开更多
Photocurrent-voltage characterization is a crucial method for assessing key parameters in x-ray or y-ray semiconductor detectors,especially the carrier mobility lifetime product.However,the high biases during photocur...Photocurrent-voltage characterization is a crucial method for assessing key parameters in x-ray or y-ray semiconductor detectors,especially the carrier mobility lifetime product.However,the high biases during photocurrent measurements tend to cause severe ion migration,which can lead to the instability and inaccuracy of the test results.Given the mixed electronic-ionic charac teristics,it is imperative to devise novel methods capable of precisely measuring photocurrentvoltage characteristics under high bias conditions,free from interference caused by ion migration.In this paper,pulsed bias is employed to explore the photocurrent-voltage characteristics of MAPbBr_(3) single crystals.The method yields stable photocurrent-voltage characteristics at a pulsed bias of up to 30 V,proving to be effective in mitigating ion migration.Through fitting the modified Hecht equation,we determined the mobility lifetime products of 1.0×10^(2) cm^(2)·V^(-1)for hole and 2.78×10~(-3)cm^(2)·V^(-1)for electron.This approach offers a promising solution for accurately measuring the transport properties of carriers in perovskite.展开更多
V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)i...V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)intercalated VO with nanoribbon structure was prepared by a simple in-situ pre-intercalation,which is noted VO-PPyd.The total density of states(TDOS)shows that after the pre-intercalation of PPyd,an intermediate energy level appears between the valence band and conduction band,which provides a step that can effectively reduce the band gap and enhance the electron conductivity.Furthermore,the density functional theory(DFT)results found that Zn^(2+)is more easily de-intercalated from the V-O skeleton,which proves that the embeddedness of PPyd improves the diffusion kinetics of Zn^(2+).Electrochemical studies have shown that VO-PPyd cathode materials exhibit excellent rate performance(high specific capacity of 465 and 192 mA h g^(-1)at 0.2 and 10 A g^(-1),respectively)and long-term cycling performance(92.7%capacity retention rate after 5300 cycles),due to their advantages in structure and composition.More importantly,the energy density of VO-PPyd//Zn at 581 and 5806 W kg^(-1)is 375 and 247 W h kg^(-1),respectively.VO-PPyd exhibits excellent electrochemical properties compared to previously reported vanadium based cathodes,which makes it highly competitive in the field of high-performance cathode materials of AZIBs.展开更多
Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.H...Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed.展开更多
Metal halide perovskites are emerging as the most promising candidate for the next-generation Photovoltaics(PV)materials,due to their superior optoelectronic properties and low cost.However,the resulting Perovskite so...Metal halide perovskites are emerging as the most promising candidate for the next-generation Photovoltaics(PV)materials,due to their superior optoelectronic properties and low cost.However,the resulting Perovskite solar cells(PSCs)suffer from poor stability.In particular,the temperature and light activated ionic defects within the perovskite lattice,as well as electric-field-induced migration of ionic defects,make the PSCs unstable at operating condition,even with device encapsulation.There is no doubt that the investigation of ion migration is crucial for the development of PSCs with high intrinsic stability.In this review,we first briefly introduce the origin and pathways of ion migration,and also the essential characterization methods to identify ion migration.Next,we discuss the impact of ion migration on the perovskite films and cells with respect to photoelectric properties and stability.Then,several representative strategies to suppress ion migration are systematically summarized in the context of composition engineering,additive engineering and interface engineering,with an in-depth understanding on the underlying mechanisms which may provide more clues for further fabrication of PSCs with improved stability.Finally,a perspective with some suggestion on future research directions and chemical approaches are provided to alleviate ion migration in perovskite materials and the entire devices.展开更多
Hybrid halide perovskites have great potential for applications in optoelectronic devices.However,the typical ion migration in perovskite could lead to the non-repeatability of electrical measurement,instability of ma...Hybrid halide perovskites have great potential for applications in optoelectronic devices.However,the typical ion migration in perovskite could lead to the non-repeatability of electrical measurement,instability of material,and degradation of device performance.The basic current–voltage behavior of perovskite materials is intricate due to the mixed electronic–ionic characteristic,which is still poorly understood in these semiconductors.Developing novel measurement schematic is a promising solution to obtain the intrinsic electrical performance without the interference of ion migration.Herein,we explore the pulse-voltage(PV)method on methylammonium lead tribromide single crystals to protect the device from the ion migration.A guideline is summarized through the analysis of measurement history and condition parameters.The influence of the ion migration on current–voltage measurement,such as repeatability and hysteresis loop,is under controlled.An application of the PV method is demonstrated on the activation energy of conductivity.The abruption of activation energy still exists near the phase transition temperature despite the ion migration is excluded by the PV method,introducing new physical insight on the current–voltage behavior of perovskite materials.The guideline on PV method will be beneficial for measuring halide perovskite materials and developing optoelectronic applications with new technique schematic.展开更多
The device preconditioning dependent hysteresis and the consequential performance degradation hinder the actual performance and stability of the perovskite solar cells. Ion migration and charge trapping in the perovsk...The device preconditioning dependent hysteresis and the consequential performance degradation hinder the actual performance and stability of the perovskite solar cells. Ion migration and charge trapping in the perovskite with large contribution from grain boundaries are the most common interpretations for the hysteresis. Yet, the high performing devices often include intermediate hole and electron transporting layers, which can further complicate the dynamical process in the device. Here, by using Kelvin Probe Force Microscopy and Confocal Photoluminescence Microscopy, we elucidate the impact of chargetransporting layers and excess MAI on the spatial and temporal variations of the photovoltage on the MAPbI3-based solar cells. By studying the devices layer by layer, we found that the light-induced ion migration occurs predominantly in the presence of an imbalanced charge extraction in the solar cells, and the charge transporting layers play crucial role in suppressing it. Careful selection and processing of the electron and hole-transporting materials are thus essential for making perovskite solar cells free from the ion migration effect.展开更多
Owing to the features(high safety,inexpensive and environmental friendliness)of aqueous rechargeable Mg-ion batteries(ARMIBs),they have drawn extensive attention in the future energy storage systems.However,the poor M...Owing to the features(high safety,inexpensive and environmental friendliness)of aqueous rechargeable Mg-ion batteries(ARMIBs),they have drawn extensive attention in the future energy storage systems.However,the poor Mg^(2+)migration kinetics during the Mg^(2+)intercalation/extraction still hinders the progress of developing suitable cathode materials.Herein,a layered buserite Mg-Mn oxide(MMO)material with large interlayer space(~9.70A)and low-crystalline structure is studied as a high-performance cathode in ARMIBs.Compared with the counterpart,the Mg^(2+)migration kinetics of the MMO cathode can be enhanced by its unique structure(bigger interlayer spacing and low-crystalline structure).The layered buserite MMO as a high-performance ARMIBs cathode exhibits high Mg storage capacity(50 mAg^(-1):169.3 mAh g^(-1)),excellent rate capability(1000 mAg^(-1):98.3 mAh g^(-1)),and fast Mg^(2+)migration(an average diffusion coefficient:~4.21×10-^(10)cm^(2)s^(-1))in 0.5 M MgCl_(2)aqueous electrolyte.Moreover,the MMO-1//AC full battery achieved a high discharge capacity(100 mAg^(-1):111 mAh g^(-1)),and an ignored fading over 5000 cycles(1000 mAg^(-1)).Therefore,layered Mg-Mn oxide with large interlayer space may break a new path to develop the promising ARMIBs.展开更多
To explore the distribution of and the mechanical properties(compressive strength)of the hardened body of alkali slag-fly ash cementitious materials,this study was conducted by using the XRD,FTIR,SEM/EDS,and other tes...To explore the distribution of and the mechanical properties(compressive strength)of the hardened body of alkali slag-fly ash cementitious materials,this study was conducted by using the XRD,FTIR,SEM/EDS,and other test methods in three conditions:airtight drying(AD),airtight immersion(AI),and airtight soaking(AS).The 1D distribution law of free of hardened body under standard curing conditions was explored.The experimental results show that under standard curing conditions,the 1D distribution of within 0d-3 d shows a∨-shaped distribution,within 3-7 d show a∧-shaped distribution,and within 7-28 d tends to be balanced.The test results of leaching rate show that the free was the most stable under AD conditions and the hardened body bound the most by XRD,FTIR and SEM/EDS.And the compressive strength of the hardened body was the highest.The compressive strength of 28th reached 95.9 MPa.The definite distribution of provides an important reference for the strength development and durability evaluation of the hardened body of alkaliexcited cementitious materials.展开更多
Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO ...Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO via facile pyrolysis of potassium Prussian blue.The multilayer interface is visually observed using an atomic-resolution scanning transmission electron microscope and a high-resolution transmission electron microscope.Combined with the electrochemical characterization,the redox of lattice oxygen is suppressed during the initial charging.In situ X-ray diffraction and the high-resolution transmission electron microscope demonstrate that the suppressed evolution of lattice oxygen eliminates the variation in the unit cell parameters during initial(de)lithiation,which further prevents lattice distortion during long cycling.As a result,the initial Coulombic efficiency of the modified LRMO is up to 87.31%,and the rate capacity and long-term cycle stability also improved considerably.In this work,a facile surface reconstruction strategy is used to suppress vigorous anionic redox,which is expected to stimulate material design in high-performance lithium ion batteries.展开更多
Narrowband photodetectors conventionally rely on optical structure design orbandpass filters to achieve the narrowband regime. Recently, a strategy forfilterless narrowband photoresponse based on the charge collection...Narrowband photodetectors conventionally rely on optical structure design orbandpass filters to achieve the narrowband regime. Recently, a strategy forfilterless narrowband photoresponse based on the charge collection narrowing(CCN) mechanism was reported. However, the CCN strategy requires an electrically and optically “thick” photoactive layer, which poses challenges in controlling the narrowband photoresponse. Here we propose a novel strategy forconstructing narrowband photodetectors by leveraging the inherent ion migration in perovskites, which we term “band modulation narrowing” (BMN). Bymanipulating the ion migration with external stimuli such as illumination,temperature, and bias voltage, we can regulate in situ the energy-band structure of perovskite photodetectors (PPDs) and hence their spectral response.Combining the Fermi energy levels obtained by the Kelvin probe force microscopy, the internal potential profiles from solar cell capacitance simulator simulation, and the anion accumulation revealed by the transient ion-drifttechnique, we discover two critical mechanisms behind our BMN strategy: theextension of an optically active but electronically dead region proximal to the top electrode and the down-bending energy bands near the electron transportlayer. Our findings offer a case for harnessing the often-annoying ionmigration for developing advanced narrowband PPDs.展开更多
3D perovskite materials are advancing rapidly in the field of photovoltaics and light-emitting diodes,but the development in field effect transistors(FETs)is limited due to their intrinsic ion migration.Ion migration ...3D perovskite materials are advancing rapidly in the field of photovoltaics and light-emitting diodes,but the development in field effect transistors(FETs)is limited due to their intrinsic ion migration.Ion migration in perovskite FETs can screen the electric field of the gate and affect its modulation,as well as influence the charge carriers transport,leading to non-ideal device characteristics and lower device stability.Here,we provide a concise review that explains the mechanism of ion migration,summarizes the strategies for suppressing ion migration,and concludes with a discussion of the future prospects for 3D perovskite FETs.展开更多
Enhancing ion conductance and controlling transport pathway in organic electrolyte could be used to modulate ionic kinetics to handle signals. In a Pt/Poly(3-hexylthiophene-2,5-diyl)/Polyethylene?Li CF3SO3/Pt hetero-j...Enhancing ion conductance and controlling transport pathway in organic electrolyte could be used to modulate ionic kinetics to handle signals. In a Pt/Poly(3-hexylthiophene-2,5-diyl)/Polyethylene?Li CF3SO3/Pt hetero-junction, the electrolyte layer handled at high temperature showed nano-fiber microstructures accompanied with greatly improved salt solubility. Ions with high mobility were confined in the nano-fibrous channels leading to the semiconducting polymer layer,which is favorable for modulating dynamic doping at the semiconducting polymer/electrolyte interface by pulse frequency.Such a device realized synaptic-like frequency selectivity, i.e., depression at low frequency stimulation but potentiation at high-frequency stimulation.展开更多
Based on the experimental data of KY 3F 10∶Tm 3+ reported by Diaf, K ushida′s spectral overlap model (SOM) of energy transfer between J-multipl ets was studied. Firstly, with the help of the Inokuti-Hirayama an...Based on the experimental data of KY 3F 10∶Tm 3+ reported by Diaf, K ushida′s spectral overlap model (SOM) of energy transfer between J-multipl ets was studied. Firstly, with the help of the Inokuti-Hirayama and Yokota-Tan imoto models, the luminescence decay curve of 3H 4 of Tm 3+ ion was fitted, and the fitted values of corresponding interaction parameters C D A of energy transfer and C DD of energy migration were obtained. Seco ndly, by compared with Kushida′s SOM in which the relevant Judd-Ofelt approxim ative transition rates are known, the average overlap integrals of S DD and S DA were obtained. For S DD, how to treat the contributi on of the electronic-dipole (ED) crystal field transition forbidden by C 4v site symmetry in the calculation of S DD was discussed. For S DA we suggested that, by including the contribution of the phonon sideba nds in the analysis of oscillator strength of transition, Kushida′s SOM of ED- ED resonant energy transfer rate can be extended to non-resonant phonon-assist ed D-A energy transfer. The strengths and widths of phonon sidebands in this ex ample were discussed, and the results were reasonably good.展开更多
The inevitable ion migration that occurs within ionic polycrystalline perovskite film results in inferior longterm stability of perovskite solar cells(PVSCs)that cannot meet the commercial requirements.Here,a novel po...The inevitable ion migration that occurs within ionic polycrystalline perovskite film results in inferior longterm stability of perovskite solar cells(PVSCs)that cannot meet the commercial requirements.Here,a novel poly(ionic liquid)named poly-1-vinyl-3-propyltrimethoxysilane imidazolium chloride(PImIL-SiO)is first introduced into perovskite to strengthen grain boundaries(GBs)and construct dual-functional barriers against internal ion migration and external moisture erosion for fabricating highly efficient and stable PVSCs.PImIL-SiO-containing imidazoliumcations and pendant siloxane groups contribute to passivation of bulk defects and anchoring of GBs,which effectively hinders ion migration channels,thus reducing perovskite film phase separation and device hysteresis.Furthermore,the intrinsically hydrophobic PImIL-SiO automatically forms a secondary protective barrier to endow the perovskite film with ultrahigh moisture corrosion resistance through the hydrolyzation reaction of siloxane with the permeated moisture.Consequently,the PImIL-SiO-modified PVSCs achieve a champion power conversion efficiency(PCE)of 22.46%,accompaniedby excellent thermal andhumidity stabilities where the non-encapsulated devices retain 87%of the initial PCE after aging at 85℃for 250 h and>85%of the initial PCE over 1100 h in air with a relative humidity of 50–70%.展开更多
So far,it's been widely acknowledged that the Pb I2decomposition under illumination mainly accounts for the degradation of perovskite solar cells(PSCs)under maximum power point(MPP)tracking condition.However,PSCs ...So far,it's been widely acknowledged that the Pb I2decomposition under illumination mainly accounts for the degradation of perovskite solar cells(PSCs)under maximum power point(MPP)tracking condition.However,PSCs without excess Pb I2were also reported to deteriorate rapidly under the same condition.Here,we demonstrate that the key to enhance PSCs stability under MPP tracking condition is not to have fascinating surface morphology with effective suppression of nonradiative recombination traps but to prevent the migration of iodine ion(I-)under light illumination.By partially substituting methylammonium chloride(MACl)with methylammonium iodide(MAI)and simutaneouly introducing I2during the sequential deposition,the iodine vacancies in perovskite films are substantially suppressed,thereby limiting the pathways for I^(-)migration.As a consequence,PSCs with efficiency of 24.28%are fabricated with remarkably enhanced working stability.展开更多
基金supported by the National Natural Science Foundation of China (No.21473178, No.21773222, No.21503203)the National Key R&D program of China (2017YFA0403403)+1 种基金the Key Program of Research and Development of Hefei Science Center of CAS(2017HSC-KPRD001)the Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘Interfacial properties between perovskite layers and metal electrodes play a crucial role in the device performance and the long-term stability of perovskite solar cells.Here,we report a comprehensive study of the interfacial degradation and ion migration at the interface between CH3NH3PbI3 perovskite layer and Ag electrode.Using in situ photoemission spectroscopy measurements,we found that the Ag electrode could induce the degradation of perovskite layers,leading to the formation of PbI2 and AgI species and the reduction of Pb^2+ions to metallic Pb species at the interface.The unconventional enhancement of the intensities of I 3d spectra provides direct experimental evidences for the migration of iodide ions from CH3NH3PbI3 subsurface to Ag electrode.Moreover,the contact of Ag electrode and perovskite layers induces an interfacial dipole of 0.3 eV at CH3NH3PbI3/Ag interfaces,which may further facilitate iodide ion diffusion,resulting in the decomposition of perovskite layers and the corrosion of Ag electrode.
基金Project(41371475)supported by the National Natural Science Foundation of ChinaProject(201509048)supported by the Environmental Protection’s Special Scientific Research for Chinese Public Welfare Industry
文摘Bauxite residue,a highly saline solid waste produced from digestion of bauxite for alumina production,is hazardous to the environment and restricts vegetation establishment in bauxite residue disposal areas.A novel water leaching process proposed here was used to investigate the dynamic migration and vertical distribution of saline ions in bauxite residue.The results show that water leaching significantly reduced the salinity of bauxite residue,leaching both saline cations Na+,K+,Ca2+and anions CO32-,SO42-,HCO3-.Na+and K+migrated from 40-50 to 20-30 cm of the column,presenting a high migration capacity.The migration capacity of Ca2+was lower and accumulated at 30-40 cm of the column.CO32-initially distributed at 20-30 cm of the column,subsequently transported to 30-40 cm of the column,and finally returned to 20-30 cm of the column along with evaporation.SO42-was originally distributed at 40-50 cm,but finally migrated to 20-30 cm of the column.Nevertheless,HCO3-remained at the bottom of the column,and its migratory was less affected by evaporation.
基金This work was funded by the National Natural Science Foundation of China(22279049 and 12247101)the Fundamental Research Funds for the Central Universities(lzujbky-2021-it31,lzujbky-2021-ct15 and lzujbky-2021-sp69)+1 种基金the calculation work was supported by Supercomputing Center of Lanzhou Universitythe Gansu Province Outstanding Doctoral Student Program(22JR5RA435).
文摘Metal halide perovskites have recently emerged as promising candidates for the next generation of X-ray detectors due to their excellent optoelectronic properties.Especially,two-dimensional(2D)perovskites afford many distinct properties,including remarkable structural diversity,high generation energy,and balanced large exciton binding energy.With the advantages of 2D materials and perovskites,it successfully reduces the decomposition and phase transition of perovskite and effectively suppresses ion migration.Meanwhile,the existence of a high hydrophobic spacer can block water molecules,thus making 2D perovskite obtain excellent stability.All of these advantages have attracted much attention in the field of X-ray detection.This review introduces the classification of 2D halide perovskites,summarizes the synthesis technology and performance characteristics of 2D perovskite X-ray direct detector,and briefly discusses the application of 2D perovskite in scintillators.Finally,this review also emphasizes the key challenges faced by 2D perovskite X-ray detectors in practical application and presents our views on its future development.
基金supported by the Natural Natural Science Foundation of China (Grant Nos.61904081 and 51672132)the Natural Science Foundation of Jiangsu Province,China (Grant No.BK20190449)the Postdoctoral Research Funding Program of Jiangsu Province,China (Grant No.2020Z144)。
文摘Benefiting from the excellent properties such as high photoluminescence quantum yield(PLQY), wide gamut range,and narrow emission linewidth, as well as low-temperature processability, metal halide perovskite quantum dots(QDs)have attracted wide attention from researchers. Despite tremendous progress has been made during the past several years,the commercialization of perovskite QDs-based LEDs(PeQLEDs) is still plagued by the instability. The ion migration in halide perovskites is recognized as the key factor causing the performance degradation of PeQLEDs. In this review, the elements species of ion migration, the effects of ion migration on device performance and stability, and effective strategies to hinder/mitigate ion migration in PeQLEDs are successively discussed. Finally, the forward insights on the future research are highlighted.
基金Project supported by the National Natural Science Foundation of China (Grant No.62104234)Shanghai Explorer Program (Grant No.22TS1400100)。
文摘Photocurrent-voltage characterization is a crucial method for assessing key parameters in x-ray or y-ray semiconductor detectors,especially the carrier mobility lifetime product.However,the high biases during photocurrent measurements tend to cause severe ion migration,which can lead to the instability and inaccuracy of the test results.Given the mixed electronic-ionic charac teristics,it is imperative to devise novel methods capable of precisely measuring photocurrentvoltage characteristics under high bias conditions,free from interference caused by ion migration.In this paper,pulsed bias is employed to explore the photocurrent-voltage characteristics of MAPbBr_(3) single crystals.The method yields stable photocurrent-voltage characteristics at a pulsed bias of up to 30 V,proving to be effective in mitigating ion migration.Through fitting the modified Hecht equation,we determined the mobility lifetime products of 1.0×10^(2) cm^(2)·V^(-1)for hole and 2.78×10~(-3)cm^(2)·V^(-1)for electron.This approach offers a promising solution for accurately measuring the transport properties of carriers in perovskite.
基金supported by the National Natural Science Foundation of China (21676036)the Natural Science Foundation of Chongqing (CSTB2023NSCQ-MSX0580)the Graduate Research and Innovation Foundation of Chongqing (CYB22043 and CYS22073)。
文摘V_(3)O_(7)·H_(2)O(VO)is a high capacity cathode material in the field of aqueous zinc ion batteries(AZIBs),but it is limited by slow ion migration and low electrical conductivity.In this paper,polypyridine(PPyd)intercalated VO with nanoribbon structure was prepared by a simple in-situ pre-intercalation,which is noted VO-PPyd.The total density of states(TDOS)shows that after the pre-intercalation of PPyd,an intermediate energy level appears between the valence band and conduction band,which provides a step that can effectively reduce the band gap and enhance the electron conductivity.Furthermore,the density functional theory(DFT)results found that Zn^(2+)is more easily de-intercalated from the V-O skeleton,which proves that the embeddedness of PPyd improves the diffusion kinetics of Zn^(2+).Electrochemical studies have shown that VO-PPyd cathode materials exhibit excellent rate performance(high specific capacity of 465 and 192 mA h g^(-1)at 0.2 and 10 A g^(-1),respectively)and long-term cycling performance(92.7%capacity retention rate after 5300 cycles),due to their advantages in structure and composition.More importantly,the energy density of VO-PPyd//Zn at 581 and 5806 W kg^(-1)is 375 and 247 W h kg^(-1),respectively.VO-PPyd exhibits excellent electrochemical properties compared to previously reported vanadium based cathodes,which makes it highly competitive in the field of high-performance cathode materials of AZIBs.
基金funded by the National Natural Science Foundation of China(Grant Nos.22279092 and 5202780089).
文摘Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed.
基金supported by the National Key Research and Development Program of China(2017YFA0206701,2020YFB1506400)the National Natural Science Foundation of China(51972004,21975028)the China Postdoctoral Science Foundation(2020M670040)。
文摘Metal halide perovskites are emerging as the most promising candidate for the next-generation Photovoltaics(PV)materials,due to their superior optoelectronic properties and low cost.However,the resulting Perovskite solar cells(PSCs)suffer from poor stability.In particular,the temperature and light activated ionic defects within the perovskite lattice,as well as electric-field-induced migration of ionic defects,make the PSCs unstable at operating condition,even with device encapsulation.There is no doubt that the investigation of ion migration is crucial for the development of PSCs with high intrinsic stability.In this review,we first briefly introduce the origin and pathways of ion migration,and also the essential characterization methods to identify ion migration.Next,we discuss the impact of ion migration on the perovskite films and cells with respect to photoelectric properties and stability.Then,several representative strategies to suppress ion migration are systematically summarized in the context of composition engineering,additive engineering and interface engineering,with an in-depth understanding on the underlying mechanisms which may provide more clues for further fabrication of PSCs with improved stability.Finally,a perspective with some suggestion on future research directions and chemical approaches are provided to alleviate ion migration in perovskite materials and the entire devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.61805263)Shanghai Sailing Program,China(Grant No.18YF1426400).
文摘Hybrid halide perovskites have great potential for applications in optoelectronic devices.However,the typical ion migration in perovskite could lead to the non-repeatability of electrical measurement,instability of material,and degradation of device performance.The basic current–voltage behavior of perovskite materials is intricate due to the mixed electronic–ionic characteristic,which is still poorly understood in these semiconductors.Developing novel measurement schematic is a promising solution to obtain the intrinsic electrical performance without the interference of ion migration.Herein,we explore the pulse-voltage(PV)method on methylammonium lead tribromide single crystals to protect the device from the ion migration.A guideline is summarized through the analysis of measurement history and condition parameters.The influence of the ion migration on current–voltage measurement,such as repeatability and hysteresis loop,is under controlled.An application of the PV method is demonstrated on the activation energy of conductivity.The abruption of activation energy still exists near the phase transition temperature despite the ion migration is excluded by the PV method,introducing new physical insight on the current–voltage behavior of perovskite materials.The guideline on PV method will be beneficial for measuring halide perovskite materials and developing optoelectronic applications with new technique schematic.
基金supported by the MEYS project, Czech Republic [No.CZ.02.1.01/0.0/0.0/15_003/0000464 (CAP)]the ’Severo Ochoa’ program for Centers of Excellence in R&D [MINECO, Grant SEV2016-0686]+3 种基金the Natural Science Foundation of Jiangsu Province, China [BK20180601]the Fundamental Research Funds for the Central Universities [JUSRP11834, JUSRP11834B]the Jiangsu Postdoctoral Science Foundation [2018K112C, 2018K113C]funding from the Lab and Equipment Management of Jiangnan University (JDSYS201906)。
文摘The device preconditioning dependent hysteresis and the consequential performance degradation hinder the actual performance and stability of the perovskite solar cells. Ion migration and charge trapping in the perovskite with large contribution from grain boundaries are the most common interpretations for the hysteresis. Yet, the high performing devices often include intermediate hole and electron transporting layers, which can further complicate the dynamical process in the device. Here, by using Kelvin Probe Force Microscopy and Confocal Photoluminescence Microscopy, we elucidate the impact of chargetransporting layers and excess MAI on the spatial and temporal variations of the photovoltage on the MAPbI3-based solar cells. By studying the devices layer by layer, we found that the light-induced ion migration occurs predominantly in the presence of an imbalanced charge extraction in the solar cells, and the charge transporting layers play crucial role in suppressing it. Careful selection and processing of the electron and hole-transporting materials are thus essential for making perovskite solar cells free from the ion migration effect.
基金financially supported by the Fundamental Research Funds for the Central Universities(NO.2021CDJXDJH003)Guangdong National Technology Co.,Ltd.
文摘Owing to the features(high safety,inexpensive and environmental friendliness)of aqueous rechargeable Mg-ion batteries(ARMIBs),they have drawn extensive attention in the future energy storage systems.However,the poor Mg^(2+)migration kinetics during the Mg^(2+)intercalation/extraction still hinders the progress of developing suitable cathode materials.Herein,a layered buserite Mg-Mn oxide(MMO)material with large interlayer space(~9.70A)and low-crystalline structure is studied as a high-performance cathode in ARMIBs.Compared with the counterpart,the Mg^(2+)migration kinetics of the MMO cathode can be enhanced by its unique structure(bigger interlayer spacing and low-crystalline structure).The layered buserite MMO as a high-performance ARMIBs cathode exhibits high Mg storage capacity(50 mAg^(-1):169.3 mAh g^(-1)),excellent rate capability(1000 mAg^(-1):98.3 mAh g^(-1)),and fast Mg^(2+)migration(an average diffusion coefficient:~4.21×10-^(10)cm^(2)s^(-1))in 0.5 M MgCl_(2)aqueous electrolyte.Moreover,the MMO-1//AC full battery achieved a high discharge capacity(100 mAg^(-1):111 mAh g^(-1)),and an ignored fading over 5000 cycles(1000 mAg^(-1)).Therefore,layered Mg-Mn oxide with large interlayer space may break a new path to develop the promising ARMIBs.
基金Funded by the Natural Sciences Foundation of China(No.51808025)the Pyramid Talent Training Project of BUCEA(No.JDYC20200329)。
文摘To explore the distribution of and the mechanical properties(compressive strength)of the hardened body of alkali slag-fly ash cementitious materials,this study was conducted by using the XRD,FTIR,SEM/EDS,and other test methods in three conditions:airtight drying(AD),airtight immersion(AI),and airtight soaking(AS).The 1D distribution law of free of hardened body under standard curing conditions was explored.The experimental results show that under standard curing conditions,the 1D distribution of within 0d-3 d shows a∨-shaped distribution,within 3-7 d show a∧-shaped distribution,and within 7-28 d tends to be balanced.The test results of leaching rate show that the free was the most stable under AD conditions and the hardened body bound the most by XRD,FTIR and SEM/EDS.And the compressive strength of the hardened body was the highest.The compressive strength of 28th reached 95.9 MPa.The definite distribution of provides an important reference for the strength development and durability evaluation of the hardened body of alkaliexcited cementitious materials.
基金This work was financially supported by the High‐level Talents'Discipline Construction Fund of Shandong University(31370089963078)the Shandong Provincial Science and Technology Major Project(2018JM RH0211 and 2017CXGC1010)+3 种基金the Research Funds of Shandong University(10000089395121)the Natural Science Foundation of Shandong Province(ZR2019MEM052 and ZR2017MEM002)The National Natural Science Foundation of China(grant no.52002287)the Start‐up Funding of Wenzhou University are acknowledged.
文摘Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO via facile pyrolysis of potassium Prussian blue.The multilayer interface is visually observed using an atomic-resolution scanning transmission electron microscope and a high-resolution transmission electron microscope.Combined with the electrochemical characterization,the redox of lattice oxygen is suppressed during the initial charging.In situ X-ray diffraction and the high-resolution transmission electron microscope demonstrate that the suppressed evolution of lattice oxygen eliminates the variation in the unit cell parameters during initial(de)lithiation,which further prevents lattice distortion during long cycling.As a result,the initial Coulombic efficiency of the modified LRMO is up to 87.31%,and the rate capacity and long-term cycle stability also improved considerably.In this work,a facile surface reconstruction strategy is used to suppress vigorous anionic redox,which is expected to stimulate material design in high-performance lithium ion batteries.
基金National Natural Science Foundation of China,Grant/Award Numbers:21972006,22275180,U2001217,22261160370,52202182Shenzhen Peacock plan,Grant/Award Number:KQTD2016053015544057+1 种基金Shenzhen Innovation Fund,Grant/Award Number:JCYJ20220818101018038Natural Sciences and Engineering Research Council of Canada,Grant/Award Number:RGPIN-2020-04239。
文摘Narrowband photodetectors conventionally rely on optical structure design orbandpass filters to achieve the narrowband regime. Recently, a strategy forfilterless narrowband photoresponse based on the charge collection narrowing(CCN) mechanism was reported. However, the CCN strategy requires an electrically and optically “thick” photoactive layer, which poses challenges in controlling the narrowband photoresponse. Here we propose a novel strategy forconstructing narrowband photodetectors by leveraging the inherent ion migration in perovskites, which we term “band modulation narrowing” (BMN). Bymanipulating the ion migration with external stimuli such as illumination,temperature, and bias voltage, we can regulate in situ the energy-band structure of perovskite photodetectors (PPDs) and hence their spectral response.Combining the Fermi energy levels obtained by the Kelvin probe force microscopy, the internal potential profiles from solar cell capacitance simulator simulation, and the anion accumulation revealed by the transient ion-drifttechnique, we discover two critical mechanisms behind our BMN strategy: theextension of an optically active but electronically dead region proximal to the top electrode and the down-bending energy bands near the electron transportlayer. Our findings offer a case for harnessing the often-annoying ionmigration for developing advanced narrowband PPDs.
基金supported by the National Natural Science Foundation of China (62374104)the Shan-dong Postdoctoral Innovation Program (SDCX-ZG-202301004,SDBX2023043)+3 种基金the Natural Science Foundation of Shandong (ZR2021QB093)the Jinan Central Hospital Collaboration (1190022050)the First Cohort of Talent Research Projects from Qilu University of Technology,Shandong Academy of Sciences in 2023 (2023RCKY199)the Pilot Project for Integrating Science,Education and Industry from Qilu University of Technology,Shandong Academy of Sciences (2023PX019).
文摘3D perovskite materials are advancing rapidly in the field of photovoltaics and light-emitting diodes,but the development in field effect transistors(FETs)is limited due to their intrinsic ion migration.Ion migration in perovskite FETs can screen the electric field of the gate and affect its modulation,as well as influence the charge carriers transport,leading to non-ideal device characteristics and lower device stability.Here,we provide a concise review that explains the mechanism of ion migration,summarizes the strategies for suppressing ion migration,and concludes with a discussion of the future prospects for 3D perovskite FETs.
基金supported by National Natural Science foundation of China (Grant Nos. 51371103 and 51231004)National Basic Research Program of China (Grant No. 2010CB832905)+1 种基金National Hi-tech (R&D) Project of China (Grant Nos. 2012AA03A706, 2013AA030801)the Research Project of Chinese Ministry of Education (No. 113007A)
文摘Enhancing ion conductance and controlling transport pathway in organic electrolyte could be used to modulate ionic kinetics to handle signals. In a Pt/Poly(3-hexylthiophene-2,5-diyl)/Polyethylene?Li CF3SO3/Pt hetero-junction, the electrolyte layer handled at high temperature showed nano-fiber microstructures accompanied with greatly improved salt solubility. Ions with high mobility were confined in the nano-fibrous channels leading to the semiconducting polymer layer,which is favorable for modulating dynamic doping at the semiconducting polymer/electrolyte interface by pulse frequency.Such a device realized synaptic-like frequency selectivity, i.e., depression at low frequency stimulation but potentiation at high-frequency stimulation.
文摘Based on the experimental data of KY 3F 10∶Tm 3+ reported by Diaf, K ushida′s spectral overlap model (SOM) of energy transfer between J-multipl ets was studied. Firstly, with the help of the Inokuti-Hirayama and Yokota-Tan imoto models, the luminescence decay curve of 3H 4 of Tm 3+ ion was fitted, and the fitted values of corresponding interaction parameters C D A of energy transfer and C DD of energy migration were obtained. Seco ndly, by compared with Kushida′s SOM in which the relevant Judd-Ofelt approxim ative transition rates are known, the average overlap integrals of S DD and S DA were obtained. For S DD, how to treat the contributi on of the electronic-dipole (ED) crystal field transition forbidden by C 4v site symmetry in the calculation of S DD was discussed. For S DA we suggested that, by including the contribution of the phonon sideba nds in the analysis of oscillator strength of transition, Kushida′s SOM of ED- ED resonant energy transfer rate can be extended to non-resonant phonon-assist ed D-A energy transfer. The strengths and widths of phonon sidebands in this ex ample were discussed, and the results were reasonably good.
基金supported by National Natural Science Foundation of China(NSFC)(grant nos.52063019,51973088,51833004,U20A20128).
文摘The inevitable ion migration that occurs within ionic polycrystalline perovskite film results in inferior longterm stability of perovskite solar cells(PVSCs)that cannot meet the commercial requirements.Here,a novel poly(ionic liquid)named poly-1-vinyl-3-propyltrimethoxysilane imidazolium chloride(PImIL-SiO)is first introduced into perovskite to strengthen grain boundaries(GBs)and construct dual-functional barriers against internal ion migration and external moisture erosion for fabricating highly efficient and stable PVSCs.PImIL-SiO-containing imidazoliumcations and pendant siloxane groups contribute to passivation of bulk defects and anchoring of GBs,which effectively hinders ion migration channels,thus reducing perovskite film phase separation and device hysteresis.Furthermore,the intrinsically hydrophobic PImIL-SiO automatically forms a secondary protective barrier to endow the perovskite film with ultrahigh moisture corrosion resistance through the hydrolyzation reaction of siloxane with the permeated moisture.Consequently,the PImIL-SiO-modified PVSCs achieve a champion power conversion efficiency(PCE)of 22.46%,accompaniedby excellent thermal andhumidity stabilities where the non-encapsulated devices retain 87%of the initial PCE after aging at 85℃for 250 h and>85%of the initial PCE over 1100 h in air with a relative humidity of 50–70%.
基金the support of the National High Technology Research and Development Program(2015AA050601)the National Natural Science Foundation of China(12134010,62074117,61904126,12174290)+1 种基金the Natural Science Foundation of Hubei Province,China(Grant No.2019AAA020)the Fundamental Research Funds for the Central Universities(2042021kf0228)。
文摘So far,it's been widely acknowledged that the Pb I2decomposition under illumination mainly accounts for the degradation of perovskite solar cells(PSCs)under maximum power point(MPP)tracking condition.However,PSCs without excess Pb I2were also reported to deteriorate rapidly under the same condition.Here,we demonstrate that the key to enhance PSCs stability under MPP tracking condition is not to have fascinating surface morphology with effective suppression of nonradiative recombination traps but to prevent the migration of iodine ion(I-)under light illumination.By partially substituting methylammonium chloride(MACl)with methylammonium iodide(MAI)and simutaneouly introducing I2during the sequential deposition,the iodine vacancies in perovskite films are substantially suppressed,thereby limiting the pathways for I^(-)migration.As a consequence,PSCs with efficiency of 24.28%are fabricated with remarkably enhanced working stability.