期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
IOUS诊断肝尾叶胆管结石82例报告
1
作者 刘竞芳 滕木俭 +4 位作者 胡宗泽 李杰 张清泉 王兴国 田虎 《山东医药》 CAS 北大核心 2008年第12期39-39,共1页
关键词 肝尾叶胆管结石 ious诊断 术中超声 手术中
下载PDF
Formation of the [M+NH_4]^+ Ious of Some Mouo-and Di-saccharides in Fast Atom Bombardment Mass Spectrometry 被引量:1
2
作者 Jian Jun ZHAI Fau Zhi ZHAO +1 位作者 Deug Gang HUANG Yao Zu CHEN (State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000Department of Chemistry , Zhejiang University , Hangzhou 310027)Jin Skan GUO(Gansu Institute of Plast 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第10期879-882,共4页
In positive-ion fast atom bombardment (FAB) mass spectrometry, when mono- and di- saccharides are mixed with an appropriate amount of NH4Cl, a highly abundan peak [M+NH4]+appers in FAB mass spectra . From the adduct ... In positive-ion fast atom bombardment (FAB) mass spectrometry, when mono- and di- saccharides are mixed with an appropriate amount of NH4Cl, a highly abundan peak [M+NH4]+appers in FAB mass spectra . From the adduct ion [M+NH4]+, the molecular weights of mono- and di- saccharides can be determined definitively 展开更多
关键词 Mass Atom ious of Some Mouo-and Di-saccharides in Fast Atom Bombardment Mass Spectrometry M+NH4 Formation of the NH
下载PDF
基于YOLOv5s−FSW模型的选煤厂煤矸检测研究
3
作者 燕碧娟 王凯民 +3 位作者 郭鹏程 郑馨旭 董浩 刘勇 《工矿自动化》 CSCD 北大核心 2024年第5期36-43,66,共9页
针对现有煤矸检测模型存在的特征提取不充分、参数量大、检测精度低且实时性差等问题,提出了一种基于YOLOv5s−FSW模型的选煤厂煤矸检测方法。该模型在YOLOv5s的基础上进行改进,首先将主干网络的C3模块替换为FasterNet Block结构,通过降... 针对现有煤矸检测模型存在的特征提取不充分、参数量大、检测精度低且实时性差等问题,提出了一种基于YOLOv5s−FSW模型的选煤厂煤矸检测方法。该模型在YOLOv5s的基础上进行改进,首先将主干网络的C3模块替换为FasterNet Block结构,通过降低模型的参数量和计算量提高检测速度;然后,在颈部网络引入无参型SimAM注意力机制,增强模型对复杂环境下重要目标的关注,进一步提高模型的特征提取能力;最后,在输出端用Wise−IoU替换CIoU边界框损失函数,使模型聚焦普通质量锚框,提高收敛速度和边框的检测精度。消融实验结果表明:与YOLOv5s模型相比,YOLOv5s−FSW模型的平均精度均值(mAP)提高了1.9%,模型权重减少了0.6 MiB,参数量减少了4.7%,检测速度提高了19.3%。对比实验结果表明:YOLOv5s−FSW模型的mAP达95.8%,较YOLOv5s−CBC,YOLOv5s−ASA,YOLOv5s−SDE模型分别提高了1.1%,1.5%和1.2%,较YOLOv5m,YOLOv6s模型分别提高了0.3%,0.6%;检测速度达36.4帧/s,较YOLOv5s−CBC,YOLOv5s−ASA模型分别提高了28.2%和20.5%,较YOLOv5m,YOLOv6s,YOLOv7模型分别提高了16.3%,15.2%,45.0%。热力图可视化实验结果表明:YOLOv5s−FSW模型对煤矸目标特征区域更加敏感且关注度更高。检测实验结果表明:在环境昏暗、图像模糊、目标相互遮挡的复杂场景下,YOLOv5s−FSW模型对煤矸目标检测的置信度得分高于YOLOv5s模型,且有效避免了误检和漏检现象的发生。 展开更多
关键词 煤矸检测 YOLOv5s FasterNet Block SimAM注意力机制 Wise−IoU边界框损失函数
下载PDF
Current use of intraoperative ultrasound in modern liver surgery
4
作者 Kai-Jian Chu Yoshikuni Kawaguchi Kiyoshi Hasegawa 《Oncology and Translational Medicine》 2023年第4期168-175,共8页
Ultrasound plays an important role not only in preoperative diagnosis but also in intraoperative guidance for liver surgery.Intraoperative ultrasound(IOUS)has become an indispensable tool for modern liver surgeons,esp... Ultrasound plays an important role not only in preoperative diagnosis but also in intraoperative guidance for liver surgery.Intraoperative ultrasound(IOUS)has become an indispensable tool for modern liver surgeons,especially for minimally invasive surgeries,partially substituting for the surgeon’s hands.In fundamental mode,Doppler mode,contrast enhancement,elastography,and real-time virtual sonography,IOUS can provide additional real-time information regarding the intrahepatic anatomy,tumor site and characteristics,macrovascular invasion,resection margin,transection plane,perfusion and outflow of the remnant liver,and local ablation efficacy for both open and minimally invasive liver resections.Identification and localization of intrahepatic lesions and surrounding structures are crucial for performing liver resection,preserving the adjacent vital vascular and bile ducts,and sparing the functional liver parenchyma.Intraoperative ultrasound can provide critical information for intraoperative decision-making and navigation.Therefore,all liver surgeons must master IOUS techniques,and IOUS should be included in the training of modern liver surgeons.Further investigation of the potential benefits and advances in these techniques will increase the use of IOUS in modern liver surgeries worldwide.This study comprehensively reviews the current use of IOUS in modern liver surgeries. 展开更多
关键词 Intraoperative ultrasound(ious) Contrast-enhanced intraoperative ultrasound(CE-ious) Intraoperative ultrasound cholangiography(iousC) Doppler intraoperative ultrasound(Doppler ious) Real-time tissue elastography(RTE) Real-time virtual sonography(RVS)
下载PDF
一种面向行人跌倒检测的改进YOLOv5算法
5
作者 沈国鑫 魏怡 +1 位作者 刘力手 尹天睿 《小型微型计算机系统》 CSCD 北大核心 2024年第4期902-909,共8页
针对行人跌倒检测的应用场景复杂,原始YOLOv5的检测精度不高,特征融合不充分的问题,本文首先提出了一种新的特征金字塔(FPN)结构-自适应特征增强融合金字塔网络(AFEF-FPN)和特征增强融合模块(FFEM)来增加特征的表示以及融合深度.其次使... 针对行人跌倒检测的应用场景复杂,原始YOLOv5的检测精度不高,特征融合不充分的问题,本文首先提出了一种新的特征金字塔(FPN)结构-自适应特征增强融合金字塔网络(AFEF-FPN)和特征增强融合模块(FFEM)来增加特征的表示以及融合深度.其次使用基于全局语义信息的上采样算子CARAFE代替Nearest Upsample来建模全局上采样信息,使用Alpha IoU Loss代替CIoU Loss来提高High IoU目标的损失和回归精度.最终本文网络YOLOv5(AFEF-FPN)在训练集上取得了98.62%mAP,在测试集上取得了96.21%mAP,相比于原始YOLOv5网络在训练集和测试集上分别提升了1.64%和2.86%.实验表明,本文网络在复杂场景下的目标检测效果优于原始YOLOv5及其他网络. 展开更多
关键词 AFEF-FPN FFEM 注意力模块 上采样算子 IoU Loss
下载PDF
改进YOLOv7的煤岩图像检测算法 被引量:1
6
作者 赵艳芹 邓虎诚 《黑龙江科技大学学报》 CAS 2024年第1期157-162,共6页
针对现阶段煤岩图像检测识别中精度和模型规模难以平衡的问题,提出了一种通过替换部分普通卷积模块来改进YOLOv7网络结构的煤岩图像检测算法。通过引入卷积核为7的卷积模块ConvNeXt来替换普通的3×3大小卷积模块,提升煤炭特征获得... 针对现阶段煤岩图像检测识别中精度和模型规模难以平衡的问题,提出了一种通过替换部分普通卷积模块来改进YOLOv7网络结构的煤岩图像检测算法。通过引入卷积核为7的卷积模块ConvNeXt来替换普通的3×3大小卷积模块,提升煤炭特征获得效果。利用SimAM注意力机制,替换1×1大小卷积模块,给出MP_SAM模块,使算法提取更丰富的目标信息,运用αIoU优化损失函数,使之更适用于清晰度不够高的煤岩图像,增强算法的泛化能力。结果表明,与YOLOv7算法相比,该算法的准确率提升了3.9%,mAP提升了1.5%,模型整体FLOPs减少了0.7 G,通过更小的模型,获得了更好的检测结果。 展开更多
关键词 煤岩检测 YOLOv7 SimAM ConvNeXt αIoU
下载PDF
基于特征融合的轻量化巡飞弹目标跟踪算法
7
作者 王子康 姚文进 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第6期195-201,共7页
针对巡飞弹平台上的视觉目标跟踪算法,开始引入深度学习思想,但是受到硬件平台算力限制的影响,提出一种轻量化的基于深度学习的孪生网络框架,在较低计算量的情况下保证巡飞弹的跟踪性能。根据IOU质量评估分支和回归分支结构,提出了一种... 针对巡飞弹平台上的视觉目标跟踪算法,开始引入深度学习思想,但是受到硬件平台算力限制的影响,提出一种轻量化的基于深度学习的孪生网络框架,在较低计算量的情况下保证巡飞弹的跟踪性能。根据IOU质量评估分支和回归分支结构,提出了一种新的特征融合方式。通过1×1卷积调整特征层通道数,控制通道数比例,对不同特征层的通道按比例进行深浅层特征拼接,用于后续的特征融合模块。在特征拼接前,引入特征合并的方法来获得有不同感受野的融合特征,进一步提高特征分辨率。将提出的新特征融合方式和特征合并方式进行纵向与横向的特征融合,充分利用特征属性,提高算法性能。根据巡飞弹硬件平台的属性限制,框架采用轻量化的AlexNet网络作为骨干网络。在OTB100、GOT-10K、UAV123三个数据集上测试,框架整体以160 fps的帧率保证了较高准确度和成功率。在满足巡飞弹特殊工作环境的基础上,实现了较为先进的跟踪性能。整体框架相对简单且性能较高,有较好的跟踪实时性,可加入其他模块来进一步提升跟踪性能。 展开更多
关键词 目标跟踪 特征融合 巡飞弹 算法轻量化 IOU质量评估分支 特征合并
下载PDF
改进YOLOv7的电动自行车违章行为检测算法
8
作者 雪勤 潘立琼 《宁波工程学院学报》 2024年第3期100-108,共9页
针对电动自行车密度大和容易互相遮挡而导致违章行为难判断及难定位的问题,构建了融合协调置换注意力机制,并优化位置损失函数的YOLOv7-CSA-DSIoU算法。通过将通道维度分成多个子特征,并将每个子特征的通道注意力模块分解为两个并行的... 针对电动自行车密度大和容易互相遮挡而导致违章行为难判断及难定位的问题,构建了融合协调置换注意力机制,并优化位置损失函数的YOLOv7-CSA-DSIoU算法。通过将通道维度分成多个子特征,并将每个子特征的通道注意力模块分解为两个并行的一维特征编码模块,用于捕捉空间方向的长程依赖和位置信息来加强网络特征提取能力。另外,改进基于斯库拉交并比损失函数的位置回归损失函数,加入预测框和目标框的顶点距离和中心点间距离的度量,实现点边双重快速收敛并提高目标检测的定位能力。实验结果表明:相对于基准模型,YOLOv7-CSA-DSIoU算法平均精度均值m AP@0.5提升了6.4%,m AP@0.75提升了4.2%,m AP@0.5:0.95提升了4.3%。 展开更多
关键词 电动自行车 违章行为 YOLO IOU 注意力机制
下载PDF
基于改进YOLOX的输电线路故障检测算法
9
作者 吴恒锋 侯兴松 王华珂 《计算机与现代化》 2024年第5期5-10,共6页
电力系统是国民生活的重要基础,对输电线故障进行智能检测具有重大的社会和经济价值。针对输电线故障检测场景缺少公开数据集,同时存在多个尺度目标时检测效果差、高IoU检测框难以获取等问题,本文提出一种基于YOLOX的输电线故障检测算... 电力系统是国民生活的重要基础,对输电线故障进行智能检测具有重大的社会和经济价值。针对输电线故障检测场景缺少公开数据集,同时存在多个尺度目标时检测效果差、高IoU检测框难以获取等问题,本文提出一种基于YOLOX的输电线故障检测算法。本文通过采集和仿真建立输电线故障检测数据集,然后在YOLOX特征融合机制的基础上,提出基于空洞卷积的自适应多尺度特征融合方法,实现多尺度特征的更有效利用,最后提出一种新的损失函数,可以有效提高网络对高IoU检测框的优化能力并解决样本不平衡问题,显著提高检测精度。实验结果表明,在本文的数据集中,本文所提的算法在保证实时性的同时,mAP_(50:95)依然能达到67.48%,超过了EfficientDet、YOLOV5等经典算法。 展开更多
关键词 故障检测 YOLOX 自适应多尺度融合 多项式IoU损失
下载PDF
面向单阶段目标检测的损失函数优化设计
10
作者 刘龙哲 刘刚 +2 位作者 徐红鹏 权冰洁 田慧 《电光与控制》 CSCD 北大核心 2024年第3期86-93,共8页
在基于深度学习的单阶段目标检测中,从交并比(IoU)出发的边界框回归损失对边界框位置关系变化敏感度不够,当预测框与真值框处于不同包含关系时,已有损失无法精确区分。针对上述问题,提出基于IoU的回归位置关系敏感度损失(RPIoU)。该损... 在基于深度学习的单阶段目标检测中,从交并比(IoU)出发的边界框回归损失对边界框位置关系变化敏感度不够,当预测框与真值框处于不同包含关系时,已有损失无法精确区分。针对上述问题,提出基于IoU的回归位置关系敏感度损失(RPIoU)。该损失设计强化预测框和真值框相对位置关系的敏感度,首先在IoU后添加惩罚项,使两框角点无限靠近,解决中心点重合时IoU退化问题;其次引入非重叠区域面积与真值框面积比值为参数的指数函数作为惩罚项,解决损失无法区分预测框和真值框存在不同包含关系的问题,更精准地指导边框回归的位置;考虑到单阶段目标检测算法总损失各部分对于训练结果的贡献度不同,以平均精度均值(mAP)作为适应度函数,利用遗传算法对训练总损失进行优化,得到分类、回归、置信度损失的各自最佳权重。将设计的损失应用于单阶段目标检测算法YOLOv5,分别在可见光公开数据集VisDrone和自制红外飞机数据集上进行验证。在可见光公开数据集上的mAP达到0.447,比原始YOLOv5提升0.037;在红外飞机数据集的mAP达到0.966,比原始YOLOv5提升0.014。 展开更多
关键词 标检测 单阶段 IoU损失 RPIoU损失
下载PDF
基于改进目标检测的动态场景SLAM研究
11
作者 史蓝兮 颜文旭 +1 位作者 倪宏宇 赵峰 《系统仿真学报》 CAS CSCD 北大核心 2024年第4期1028-1042,共15页
针对单目SLAM在动态场景下存在的对极约束误匹配问题,提出一种基于目标检测的动态特征点选择方法,通过在特征提取时剔除SLAM系统前端图像帧中动态特征点,提高SLAM的定位精度。提出了一个改进的目标检测网络,利用重叠面积、距离相似度和... 针对单目SLAM在动态场景下存在的对极约束误匹配问题,提出一种基于目标检测的动态特征点选择方法,通过在特征提取时剔除SLAM系统前端图像帧中动态特征点,提高SLAM的定位精度。提出了一个改进的目标检测网络,利用重叠面积、距离相似度和余弦相似度构建描述边界框的回归损失函数,实现目标的准确定位,获得当前图像帧中物体特征点范围。判断物体类别,对于标记为动态的物体根据目标检测结果剔除前端图像帧中的动态特征点。根据静态特征点,采用对极约束进行两帧图像间的特征匹配估计位姿,对单目相机运动进行跟踪、建图与闭环检测。通过对目标检测网络的主干进行结构重参数化改进,提升推理过程的速度,保证整体系统运行的实时性。在公开数据集KITTI的11个序列上的实验结果表明:改进后的系统比ORB-SLAM3系统定位精度提升了23.4%,帧率可以达到30帧/s以上,在保证实时运行的条件下能有效提高动态场景下单目SLAM系统定位精度。 展开更多
关键词 视觉SLAM 对极约束 特征匹配 目标检测 IoU损失函数 结构重参数化
下载PDF
基于改进YOLOv5s的果园环境葡萄检测 被引量:4
12
作者 孙俊 吴兆祺 +3 位作者 贾忆琳 宫东见 武小红 沈继锋 《农业工程学报》 EI CAS CSCD 北大核心 2023年第18期192-200,共9页
为了快速精准地识别复杂果园环境下的葡萄目标,该研究基于YOLOv5s提出一种改进的葡萄检测模型(MRWYOLOv5s)。首先,为了减少模型参数量,采用轻量型网络MobileNetv3作为特征提取网络,并在MobileNetv3的bneck结构中嵌入坐标注意力模块(coor... 为了快速精准地识别复杂果园环境下的葡萄目标,该研究基于YOLOv5s提出一种改进的葡萄检测模型(MRWYOLOv5s)。首先,为了减少模型参数量,采用轻量型网络MobileNetv3作为特征提取网络,并在MobileNetv3的bneck结构中嵌入坐标注意力模块(coordinate attention,CA)以加强网络的特征提取能力;其次,在颈部网络中引入RepVGG Block,融合多分支特征提升模型的检测精度,并利用RepVGG Block的结构重参数化进一步加快模型的推理速度;最后,采用基于动态非单调聚焦机制的损失(wise intersection over union loss,WIoU Loss)作为边界框回归损失函数,加速网络收敛并提高模型的检测准确率。结果表明,改进的MRW-YOLOv5s模型参数量仅为7.56 M,在测试集上的平均精度均值(mean average precision,mAP)达到97.74%,相较于原YOLOv5s模型提升了2.32个百分点,平均每幅图片的检测时间为10.03 ms,比原YOLOv5s模型减少了6.13 ms。与主流的目标检测模型SSD、RetinaNet、YOLOv4、YOLOv7和YOLOX相比,MRW-YOLOv5s模型的mAP分别高出9.89、7.53、2.12、0.91、2.42个百分点,并且在模型参数量大小和检测速度方面有着很大的优势,该研究可为果园智能化、采摘机械化提供技术支持。 展开更多
关键词 图像处理 果实识别 YOLOv5s 注意力机制 RepVGG Wise IoU
下载PDF
重构SPPCSPC与优化下采样的小目标检测算法 被引量:7
13
作者 齐向明 柴蕊 高一萌 《计算机工程与应用》 CSCD 北大核心 2023年第20期158-166,共9页
针对小目标图像检测中存在相互遮挡、背景复杂和特征点少的问题,基于YOLOv7提出一种重构SPPCSPC与优化下采样的小目标检测算法。在骨干网络的SPPCSPC模块中裁剪CBS层、引入SimAM注意力机制并缩小池化核,以提高关注密集目标区域,提取更... 针对小目标图像检测中存在相互遮挡、背景复杂和特征点少的问题,基于YOLOv7提出一种重构SPPCSPC与优化下采样的小目标检测算法。在骨干网络的SPPCSPC模块中裁剪CBS层、引入SimAM注意力机制并缩小池化核,以提高关注密集目标区域,提取更多相互遮挡的小目标特征;在颈部网络中,将下采样结构中的SConv替换为SPD Conv,再添加一个四倍下采样分支,以减少小目标特征丢失,提高复杂背景下小目标特征捕获量;把网络模型的损失函数由CIoU替换为Wise IoU,聚焦一般质量瞄框,提升收敛速度。在公开数据集VisDrone2021上做对比实验和消融实验,该算法与原始YOLOv7算法相比,mAP提升5.09个百分点,FPS值达到40,参数量减少2.5 MB,表明小目标检测精度显著提升,同时保持了推理速度并减少了参数量;在公开数据集VOC2007+2012上做泛化实验,mAP提升3.35个百分点,表明该算法具有通用性。 展开更多
关键词 小目标检测 重构SPPCSPC 优化下采样 Wise IoU YOLOv7
下载PDF
基于DWT与SVM的风门开闭阶段识别方法 被引量:1
14
作者 邓立军 尚文天 +2 位作者 刘剑 周煜凯 宋莹 《中国安全科学学报》 CAS CSCD 北大核心 2023年第1期95-104,共10页
为解决因风门开闭导致的风速传感器数据异常波动与误报警问题,提出一种基于离散小波变换(DWT)与支持向量机(SVM)的风门开闭阶段识别方法。使用多尺度滑动窗口将传感器风速监测数据离散化为若干段不同尺度的子时间序列数据,利用统计方法... 为解决因风门开闭导致的风速传感器数据异常波动与误报警问题,提出一种基于离散小波变换(DWT)与支持向量机(SVM)的风门开闭阶段识别方法。使用多尺度滑动窗口将传感器风速监测数据离散化为若干段不同尺度的子时间序列数据,利用统计方法与DWT,提取各尺度子时间序列数据中的统计特征与隐含的波动特征,建立SVM风门开闭阶段识别分类模型。为进一步优化识别结果,基于重叠度(IoU)规则合并、修正、组合、取优分类识别结果,再根据相似准则建立长度方向取变率为2、整体相似比为1∶16的相似试验模型,开展风门开闭扰动试验,验证方法的可行性。结果表明:在测试集上的识别准确率较高,对于风门开闭时间的识别准确率可达到90.08%,风门开闭阶段的划分准确率可达到71.05%,优化滑动窗口尺度数量,可继续增加方法识别的准确率。 展开更多
关键词 离散小波变换(DWT) 支持向量机(SVM) 风门开闭 阶段识别 多尺度滑动窗口 重叠度(IoU)
下载PDF
基于改进的Mask R-CNN的无人机图像车位检测 被引量:1
15
作者 王宁 汤毅 +1 位作者 何宏 刘魏旭 《信息技术与信息化》 2023年第2期195-199,共5页
停车位难寻是如今城市普遍存在的问题,因此一种高效的车位检测算法尤为重要。为此,提出了无人机结合基于改进的Mask R-CNN的智能停车位检测算法的方法。首先,为缩短算法模型训练时间,采用轻量级MobileNetV3网络作为其主干特征提取网络,... 停车位难寻是如今城市普遍存在的问题,因此一种高效的车位检测算法尤为重要。为此,提出了无人机结合基于改进的Mask R-CNN的智能停车位检测算法的方法。首先,为缩短算法模型训练时间,采用轻量级MobileNetV3网络作为其主干特征提取网络,同时对MobileNetV3网络进行改进,有效减少了网络参数并压缩了模型体积;其次,通过改进网络结构、重新设计Anchor生成,解决了无人机飞行高度和角度会导致所要检测的目标较小或者存在遮挡的问题;最后,通过优化FPN与特征网络卷积结构,得到了本文的无人机图像车位检测改进模型。通过对比不同算法之间的性能,验证了改进的MaskRCNN算法在时间和精度上均优于原算法和其他算法,具有一定的研究意义。 展开更多
关键词 Mask R-CNN MobileNetV3 停车位 ANCHOR IOU
下载PDF
基于自适应聚焦CRIoU损失的目标检测算法
16
作者 肖振久 赵昊泽 +5 位作者 张莉莉 夏羽 郭杰龙 俞辉 李成龙 王俐文 《液晶与显示》 CAS CSCD 北大核心 2023年第11期1468-1480,共13页
在目标检测任务中,传统的边界框回归损失函数所回归的内容与评价标准IoU(Intersection over Union)之间存在不相关性,并且对于边界框的回归属性存在一定不合理性,使得回归属性不完整,降低了检测精度和收敛速度,甚至还会造成回归阻碍的... 在目标检测任务中,传统的边界框回归损失函数所回归的内容与评价标准IoU(Intersection over Union)之间存在不相关性,并且对于边界框的回归属性存在一定不合理性,使得回归属性不完整,降低了检测精度和收敛速度,甚至还会造成回归阻碍的情况。并且在回归任务中也存在样本不均衡的情况,大量的低质量样本影响了损失收敛。为了提高检测精度和回归收敛速度提出了一种新的边界框回归损失函数。首先确定设计思想并设计IoU系列损失函数的范式;其次在IoU损失的基础上引入两中心点形成矩形的周长和两框形成的最小闭包矩形周长的比值作为边界框中心点距离惩罚项,并且将改进的IoU损失应用到非极大值抑制(Non-Maximum Suppression,NMS)处理中。接着引入两框的宽高误差和最小外包框的宽高平方作为宽高惩罚项,确定CRIoU(Complete Relativity IoU,CRIoU)损失函数。最后在CRIoU的基础上加入自适应加权因子,对高质量样本的回归损失加权,定义了自适应聚焦CRIoU(Adaptive focal CRIoU,AF-CRIoU)。实验结果表明,使用AF-CRIoU损失函数对比传统非IoU系列损失的检测精度最高相对提升了8.52%,对比CIoU系列损失的检测精度最高相对提升了2.69%,使用A-CRIoU-NMS(Around CRIoU NMS)方法对比原NMS方法的检测精度提升0.14%。将AF-CRIoU损失应用到安全帽检测中,也达到了很好的检测效果。 展开更多
关键词 目标检测 边界框回归 IoU损失函数 非极大值抑制 自适应聚焦损失
下载PDF
一种用于目标跟踪边界框回归的光滑IoU损失 被引量:10
17
作者 李功 赵巍 +1 位作者 刘鹏 唐降龙 《自动化学报》 EI CAS CSCD 北大核心 2023年第2期288-306,共19页
边界框回归分支是深度目标跟踪器的关键模块,其性能直接影响跟踪器的精度.评价精度的指标之一是交并比(Intersection over union,IoU).基于IoU的损失函数取代了l_(n)-norm损失成为目前主流的边界框回归损失函数,然而IoU损失函数存在2个... 边界框回归分支是深度目标跟踪器的关键模块,其性能直接影响跟踪器的精度.评价精度的指标之一是交并比(Intersection over union,IoU).基于IoU的损失函数取代了l_(n)-norm损失成为目前主流的边界框回归损失函数,然而IoU损失函数存在2个固有缺陷:1)当预测框与真值框不相交时IoU为常量0,无法梯度下降更新边界框的参数;2)在IoU取得最优值时其梯度不存在,边界框很难收敛到IoU最优处.揭示了在回归过程中IoU最优的边界框各参数之间蕴含的定量关系,指出在边界框中心处于特定位置时存在多种尺寸不同的边界框使IoU损失最优的情况,这增加了边界框尺寸回归的不确定性.从优化两个统计分布之间散度的视角看待边界框回归问题,提出了光滑IoU(Smooth-IoU,SIoU)损失,即构造了在全局上光滑(即连续可微)且极值唯一的损失函数,该损失函数自然蕴含边界框各参数之间特定的最优关系,其唯一取极值的边界框可使IoU达到最优.光滑性确保了在全局上梯度存在使得边界框更容易回归到极值处,而极值唯一确保了在全局上可梯度下降更新参数,从而避开了IoU损失的固有缺陷.提出的光滑损失可以很容易取代IoU损失集成到现有的深度目标跟踪器上训练边界框回归,在LaSOT、GOT-10k、TrackingNet、OTB2015和VOT2018测试基准上所取得的结果,验证了光滑IoU损失的易用性和有效性. 展开更多
关键词 光滑IoU损失 l_(n)-norm损失 边界框回归 目标跟踪
下载PDF
基于Flexible YOLOv7的输电线路绝缘子缺陷检测和故障预警方法 被引量:8
18
作者 宋智伟 黄新波 +1 位作者 纪超 张烨 《高电压技术》 EI CAS CSCD 北大核心 2023年第12期5084-5094,共11页
电力设备的平稳运行是保障居民生产生活的重要前提。输电线路绝缘子缺陷尺寸较小,传统的目标检测算法通常难以识别到缺陷目标,误检、漏检率较高。针对不同材质绝缘子缺陷检测存在目标过小、遮挡、背景复杂等难题,提出了一种基于Flexible... 电力设备的平稳运行是保障居民生产生活的重要前提。输电线路绝缘子缺陷尺寸较小,传统的目标检测算法通常难以识别到缺陷目标,误检、漏检率较高。针对不同材质绝缘子缺陷检测存在目标过小、遮挡、背景复杂等难题,提出了一种基于Flexible YOLOv7的绝缘子缺陷检测算法。该算法继承了YOLOv7网络的E-ELAN结构、Rep重参数化和辅助训练策略,并且在特征提取的过程中集成GAM注意力机制以放大显著的跨维度接受区域,通过高效的Ghost SPPCSPC结构减少模型训练过程中的参数冗余,引入Efficient IOU Loss重点关注高质量的anchors提升原始模型的检测精度。最后通过图像后处理技术对绝缘子缺陷进行等级划分与精细计算,并结合算法部署开发了绝缘子缺陷故障检测系统用于故障的提前预警。实验结果表明,该算法在密集目标、遮挡、小目标缺陷检测中的平均准确率AP、召回率Recall、相关指标F1指标均领先于当前先进的几类目标检测算法,在复杂环境下的绝缘子缺陷检测和故障预警方面具有一定的现实意义。 展开更多
关键词 绝缘子缺陷检测 Flexible YOLOv7 GAM注意力机制 Efficient IOU Loss 图像后处理技术 输电线路故障预警
下载PDF
基于自适应锚框分配与IOU监督的复杂场景SAR舰船检测 被引量:2
19
作者 胥小我 张晓玲 +3 位作者 张天文 邵子康 徐彦钦 曾天娇 《雷达学报(中英文)》 EI CSCD 北大核心 2023年第5期1097-1111,共15页
针对复杂场景舰船检测中正负样本分配不合理以及定位质量较差的问题,该文提出了一种基于自适应锚框分配与交并比(IOU)监督的复杂场景合成孔径雷达(SAR)舰船检测方法(A3-IOUS-Net)。首先,A3-IOUS-Net提出了自适应锚框分配,建立概率分布... 针对复杂场景舰船检测中正负样本分配不合理以及定位质量较差的问题,该文提出了一种基于自适应锚框分配与交并比(IOU)监督的复杂场景合成孔径雷达(SAR)舰船检测方法(A3-IOUS-Net)。首先,A3-IOUS-Net提出了自适应锚框分配,建立概率分布模型来自适应地将锚框分配为正负样本,增强了复杂场景下的舰船样本学习能力。然后,A3-IOUS-Net提出了IOU监督,在预测头部增加IOU预测分支来监督检测框定位质量,使得网络能够精确定位复杂场景下的舰船目标。此外,在该IOU预测分支中引入了坐标注意力模块,抑制了背景杂波干扰,进一步提高了检测精度。在公开的SAR舰船检测数据集(SSDD)的实验结果表明,A3-IOUS-Net在复杂场景中的平均精度(AP)值为82.04%,优于其他15种对比模型。 展开更多
关键词 合成孔径雷达 舰船检测 复杂场景 自适应锚框分配 IOU监督
下载PDF
改进回归损失的深度学习单阶段红外飞机检测 被引量:2
20
作者 曹紫绚 刘刚 +2 位作者 张文波 刘森 刘中华 《电光与控制》 CSCD 北大核心 2023年第4期28-33,共6页
针对目标检测定位准确性受边框回归损失函数影响的特性,设计基于IoU(Intersection over Union)的边框回归损失函数IAIoU(Included Aspect-ratio IoU)。该损失设计两项优化项,将预测框与标注框并集与交集面积的差与两框最小闭包面积之比... 针对目标检测定位准确性受边框回归损失函数影响的特性,设计基于IoU(Intersection over Union)的边框回归损失函数IAIoU(Included Aspect-ratio IoU)。该损失设计两项优化项,将预测框与标注框并集与交集面积的差与两框最小闭包面积之比及与两框最小闭包面积平方之比的和作为第一项优化项,避免两框包含时损失函数退化;利用两框长宽比值之差作为第二项优化项,生成更接近标注框的预测框。设计的损失应用于单阶段检测算法YOLOv3,在红外飞机数据集上进行验证,mAP达到92.17%,比原始YOLOv3提升1.37%。 展开更多
关键词 红外飞机 目标检测 IoU损失 IAIoU损失
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部