Sequence-related amplification polymorphism (SRAP) markers closely linked to stem nematode resistance gene were developed in sweetpotato, lpomoea batatas (L.) Lam. Using bulked segregant analysis (BSA), 200 SRAP...Sequence-related amplification polymorphism (SRAP) markers closely linked to stem nematode resistance gene were developed in sweetpotato, lpomoea batatas (L.) Lam. Using bulked segregant analysis (BSA), 200 SRAP primer combinations were screened with the resistant and susceptible bulked DNA from the 196 progenies of an F1 single-cross population of resistant parent Xu 781xsusceptible parent Xushu 18, 77 of them showed polymorphic bands between resistant and susceptible DNA. Primer combinations detecting polymorphism between the two bulks were used to screen both parents and 10 individuals from each of the bulks. The results showed that primer combination A9B4 produced 3 specific bands in the resistant plants but not in the susceptible plants, suggesting that the markers, named Nspl, Nsp2 and Nsp3, respectively, linked to a gene for stem nematode resistance. Primer combination A3B6 also produced a SRAP marker named Nsp4 linking to the resistance gene. Amplified analysis of the 196 F1 individuals indicated that the genetic distance between these markers and the resistance gene was 4.7, 4.7, 6.3, and 9.6 cM, respectively.展开更多
The somatic hybrid KT1 was previously obtained from protoplast fusion between sweetpotato (Ipomoea batatas (L.) Lam.) cv. Kokei No. 14 and its wild relative I. triloba L. However, its genetic and epigenetic variat...The somatic hybrid KT1 was previously obtained from protoplast fusion between sweetpotato (Ipomoea batatas (L.) Lam.) cv. Kokei No. 14 and its wild relative I. triloba L. However, its genetic and epigenetic variations have not been investigated. This study showed that KT1 exhibited significantly higher drought tolerance compared to the cultivated parent Kokei No. 14. The content of proline and activities of superoxide dismutase (SOD) and photosynthesis were significantly increased, while malonaldehyde (MDA) content was significantly decreased compared to Kokei No. 14 under drought stress. KT1 also showed higher expression level of well-known drought stress-responsive genes compared to Kokei No. 14 under drought stress. Amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) analyses indicated that KT1 had AFLP and MSAP band patterns consisting of both parent specific bands and changed bands. Fur- ther analysis demonstrated that in KT1. the proportions of Kokei No. 14 specific genome components and methylation sites were much greater than those of I. triloba. KT1 had the same chloroplast and mitochondrial genomes as Kokei No. 14. These results will aid in developing the useful genes ofI. triloba and understanding the evolution and phylogeny of the cultivated sweetpotato.展开更多
Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in a variety of organisms. In plants, its biosynthesis is catalyzed by two key enzymes: trehalose-6-phosphate synthase(TPS) and...Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in a variety of organisms. In plants, its biosynthesis is catalyzed by two key enzymes: trehalose-6-phosphate synthase(TPS) and trehalose-6-phosphate phosphatase(TPP). In the present study, a TPS gene, named IbTPS, was first isolated from sweetpotato(Ipomoea batatas(L.) Lam.) cv. Lushu 3 by rapid amplification of cDNA ends(RACE). The open reading frame(ORF) contained 2 580 nucleotides encoding 859 amino acids with a molecular weight of 97.433 kDa and an isoelectric point(pI) of 5.7. The deduced amino acid sequence showed high identities with TPS of other plants. Real-time quantitative PCR analysis revealed that the expression level of IbTPS gene was significantly higher in stems of Lushu 3 than in its leaves and roots. Subcellular localization analysis in onion epidermal cells indicated that IbTPS gene was located in the nucleus. Transgenic tobacco(cv. Wisconsin 38) plants over-expressing IbTPS gene exhibited significantly higher salt tolerance compared with the control plant. Trehalose and proline content was found to be significantly more accumulated in transgenic tobacco plants than in the wild-type and several stress tolerance related genes were up-regulated. These results suggest that IbTPS gene may enhance salt tolerance of plants by increasing the amount of treahalose and proline and regulating the expression of stress tolerance related genes.展开更多
Iron-sulfur cluster biosynthesis involving the nitrogen fixation(Nif) proteins has been proposed as a general mechanism acting in various organisms.NifU-like protein may play an important role in protecting plants a...Iron-sulfur cluster biosynthesis involving the nitrogen fixation(Nif) proteins has been proposed as a general mechanism acting in various organisms.NifU-like protein may play an important role in protecting plants against abiotic and biotic stresses.Based on the EST sequence selected from salt-stressed suppression subtractive hybridization(SSH) cDNA library constructed with a salt-tolerant mutant LM79,a NFU gene,termed IbNFU1,was cloned from sweetpotato(Ipomoea batatas(L.) Lam.) via rapid amplification of cDNA ends(RACE).The cDNA sequence of 1 117 bp contained an 846 bp open reading frame encoding a 281 amino acids polypeptide with a molecular weight of 30.5 kDa and an isoelectric point(pI) of 5.12.IbNFU1 gene contained a conserved Cys-X-X-Cys motif in C-terminal of the iron-sulfur cluster domain.The deduced amino acid sequence had 66.08 to 71.99% sequence identity to NFU genes reported in Arabidopsis thaliana,Eucalyptus grandis and Vitis vinifera.Real-time quantitative PCR analysis revealed that the expression level of IbNFU1 gene was significantly higher in the roots of the mutant LM79 compared to the wild-type Lizixiang.Transgenic tobacco(cv.Wisconsin 38) plants expressing IbNFU1 gene exhibited significantly higher salt tolerance compared to the untransformed control plants.It is proposed that IbNFU1 gene has an important function for salt tolerance of plants.展开更多
Enhanced stem nematode resistance of transgenic sweetpotato (cv. Lizixiang) was achieved using Oryzacystatin-I (OCI) gene with Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strain EHA105 harbor...Enhanced stem nematode resistance of transgenic sweetpotato (cv. Lizixiang) was achieved using Oryzacystatin-I (OCI) gene with Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strain EHA105 harbors a binary vector pCAMBIA1301 with OCI gene, gusA gene and hptII gene. Selection culture was conducted using 25 mg L-1 hygromycin. A total of 1 715 plants were produced from the inoculated 1 450 cell aggregates of Lizixiang via somatic embryogenesis. GUS assay and PCR analysis of the putative transgenic plants randomly sampled showed that 90.54% of them were transgenic plants. Transgenic plants exhibited significantly enhanced resistance to stem nematodes compared to the untransformed control plants by the field evaluation with stem nematodes. Stable integration of the OCI gene into the genome of resistant transgenic plants was confirmed by Southern blot analysis, and the copy number of integrated OCI gene ranged from 1 to 4. Transgene overexpression in stem nematode-resistant plants was demonstrated by quantitative real-time PCR analysis. This study provides a way for improving stem nematode resistance in sweetpotato.展开更多
Geranylgeranyl pyrophosphate synthase(GGPS) plays an important role in the biosynthesis of carotenoids. In a previous study, the IbGGPS gene was isolated from a sweetpotato, Ipomoea batatas(L.) Lam., line Nongdafu 14 ...Geranylgeranyl pyrophosphate synthase(GGPS) plays an important role in the biosynthesis of carotenoids. In a previous study, the IbGGPS gene was isolated from a sweetpotato, Ipomoea batatas(L.) Lam., line Nongdafu 14 with high carotenoid contents, but its role and underlying mechanisms in carotenoid biosynthesis in sweetpotato were not investigated. In the present study, the IbGGPS gene was introduced into a sweetpotato cv. Lizixiang and the contents of β-carotene, β-cryptoxanthin, zeaxanthin and lutein were significantly increased in the storage roots of the IbGGPSoverexpressing sweetpotato plants. Further analysis showed that IbGGPS gene overexpression systematically upregulated the genes involved in the glycolytic, 2-C-methyl-D-erythritol-4-phosphate(MEP) and carotenoid pathways,which increased the carotenoid contents in the transgenic plants. These results indicate that the IbGGPS gene has the potential for use in improving the carotenoid contents in sweetpotato and other plants.展开更多
Fusarium wilt,a disease caused by Fusarium oxysporum f.sp batatas(Fob)is an important disease in sweet potato production.Using endophytic bacteria for biological control of sweet potato diseases is one of the importan...Fusarium wilt,a disease caused by Fusarium oxysporum f.sp batatas(Fob)is an important disease in sweet potato production.Using endophytic bacteria for biological control of sweet potato diseases is one of the important ways.A Bacillus subtilis with antagonistic effect on Fusarium wilt of sweet potato was isolated from soil by confrontation culture.According to the biological characteristics,16S rDNA sequence analysis,and physiological and biochemical analysis,the Bacillus subtilis HAAS01 was named.A pot experiment was conducted for the biological control experiment of strain HAAS01,and the endogenous hormone content,antioxidant enzyme activity,soluble protein content,and related gene expressions of sweet potato plants were detected.The results showed that the HAAS01 strain could promote the production of endogenous hormones and resist the infection of plant diseases together with defensive enzymes and upregulation of related gene expressions.In summary,Bacillus subtilis HAAS01 was effective in controlling Fusarium wilt of sweet potato and has potential for application and development.展开更多
利用文献数据库客观分析全球甘薯[Ipomoea batatas(L.)Lam.]研究现状与发展趋势,以期为甘薯研究工作提供参考。利用Web of ScienceTM核心集数据库,采用文献计量学方法对2009—2018年甘薯研究文献进行统计分析。结果表明,全球甘薯研究论...利用文献数据库客观分析全球甘薯[Ipomoea batatas(L.)Lam.]研究现状与发展趋势,以期为甘薯研究工作提供参考。利用Web of ScienceTM核心集数据库,采用文献计量学方法对2009—2018年甘薯研究文献进行统计分析。结果表明,全球甘薯研究论文产出量呈上升趋势,文章质量逐年提高。发文量位列前三的有中国、美国和韩国,美国等发达国家在该领域影响力大,高被引论文大多出自欧美国家。近几年亚洲逐渐成为甘薯研究的新中心,中国的高产活跃作者较多,但距离世界先进水平仍存在一定的差距。美国农业部和中国农业科学院、中国农业大学等机构的甘薯研究论文影响力较大。当前主要研究方向是分子生物学、遗传学和食品科学等方面,学科之间、国家(地区)之间的合作日益紧密。展开更多
基金supported by China Agriculture Research System (CARS-11, Sweetpotato)the National 863 Program of China (2012AA101204)
文摘Sequence-related amplification polymorphism (SRAP) markers closely linked to stem nematode resistance gene were developed in sweetpotato, lpomoea batatas (L.) Lam. Using bulked segregant analysis (BSA), 200 SRAP primer combinations were screened with the resistant and susceptible bulked DNA from the 196 progenies of an F1 single-cross population of resistant parent Xu 781xsusceptible parent Xushu 18, 77 of them showed polymorphic bands between resistant and susceptible DNA. Primer combinations detecting polymorphism between the two bulks were used to screen both parents and 10 individuals from each of the bulks. The results showed that primer combination A9B4 produced 3 specific bands in the resistant plants but not in the susceptible plants, suggesting that the markers, named Nspl, Nsp2 and Nsp3, respectively, linked to a gene for stem nematode resistance. Primer combination A3B6 also produced a SRAP marker named Nsp4 linking to the resistance gene. Amplified analysis of the 196 F1 individuals indicated that the genetic distance between these markers and the resistance gene was 4.7, 4.7, 6.3, and 9.6 cM, respectively.
基金supported by the China Agriculture Research System(CARS-11,Sweetpotato)the National Natural Science Foundation of China(31461143017)
文摘The somatic hybrid KT1 was previously obtained from protoplast fusion between sweetpotato (Ipomoea batatas (L.) Lam.) cv. Kokei No. 14 and its wild relative I. triloba L. However, its genetic and epigenetic variations have not been investigated. This study showed that KT1 exhibited significantly higher drought tolerance compared to the cultivated parent Kokei No. 14. The content of proline and activities of superoxide dismutase (SOD) and photosynthesis were significantly increased, while malonaldehyde (MDA) content was significantly decreased compared to Kokei No. 14 under drought stress. KT1 also showed higher expression level of well-known drought stress-responsive genes compared to Kokei No. 14 under drought stress. Amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) analyses indicated that KT1 had AFLP and MSAP band patterns consisting of both parent specific bands and changed bands. Fur- ther analysis demonstrated that in KT1. the proportions of Kokei No. 14 specific genome components and methylation sites were much greater than those of I. triloba. KT1 had the same chloroplast and mitochondrial genomes as Kokei No. 14. These results will aid in developing the useful genes ofI. triloba and understanding the evolution and phylogeny of the cultivated sweetpotato.
基金supported by the National Natural Science Foundation of China (31271777)the China Agriculture Research System (CARS-11, Sweetpotato)+1 种基金the National High-Tech R&D Program of China (2012AA101204)the Beijing Key Discipline Program, China
文摘Trehalose plays an important role in metabolic regulation and abiotic stress tolerance in a variety of organisms. In plants, its biosynthesis is catalyzed by two key enzymes: trehalose-6-phosphate synthase(TPS) and trehalose-6-phosphate phosphatase(TPP). In the present study, a TPS gene, named IbTPS, was first isolated from sweetpotato(Ipomoea batatas(L.) Lam.) cv. Lushu 3 by rapid amplification of cDNA ends(RACE). The open reading frame(ORF) contained 2 580 nucleotides encoding 859 amino acids with a molecular weight of 97.433 kDa and an isoelectric point(pI) of 5.7. The deduced amino acid sequence showed high identities with TPS of other plants. Real-time quantitative PCR analysis revealed that the expression level of IbTPS gene was significantly higher in stems of Lushu 3 than in its leaves and roots. Subcellular localization analysis in onion epidermal cells indicated that IbTPS gene was located in the nucleus. Transgenic tobacco(cv. Wisconsin 38) plants over-expressing IbTPS gene exhibited significantly higher salt tolerance compared with the control plant. Trehalose and proline content was found to be significantly more accumulated in transgenic tobacco plants than in the wild-type and several stress tolerance related genes were up-regulated. These results suggest that IbTPS gene may enhance salt tolerance of plants by increasing the amount of treahalose and proline and regulating the expression of stress tolerance related genes.
基金supported by the China Agricultural Research System (Sweetpotato)the National High-Tech Research and Development Program of China(2009AA10Z102)+1 种基金the National Transgenic Plants Project of China (2009ZX08009-064B)the National Natural Science Foundation of China (31071468)
文摘Iron-sulfur cluster biosynthesis involving the nitrogen fixation(Nif) proteins has been proposed as a general mechanism acting in various organisms.NifU-like protein may play an important role in protecting plants against abiotic and biotic stresses.Based on the EST sequence selected from salt-stressed suppression subtractive hybridization(SSH) cDNA library constructed with a salt-tolerant mutant LM79,a NFU gene,termed IbNFU1,was cloned from sweetpotato(Ipomoea batatas(L.) Lam.) via rapid amplification of cDNA ends(RACE).The cDNA sequence of 1 117 bp contained an 846 bp open reading frame encoding a 281 amino acids polypeptide with a molecular weight of 30.5 kDa and an isoelectric point(pI) of 5.12.IbNFU1 gene contained a conserved Cys-X-X-Cys motif in C-terminal of the iron-sulfur cluster domain.The deduced amino acid sequence had 66.08 to 71.99% sequence identity to NFU genes reported in Arabidopsis thaliana,Eucalyptus grandis and Vitis vinifera.Real-time quantitative PCR analysis revealed that the expression level of IbNFU1 gene was significantly higher in the roots of the mutant LM79 compared to the wild-type Lizixiang.Transgenic tobacco(cv.Wisconsin 38) plants expressing IbNFU1 gene exhibited significantly higher salt tolerance compared to the untransformed control plants.It is proposed that IbNFU1 gene has an important function for salt tolerance of plants.
基金supported by the Earmarked Fund for Modern Agro-Industry Technology Research System(Sweetpotato), Chinathe National High-Tech R&D Pro-gram of China (2009AA10Z102)+2 种基金the National Transgenic Plants Project of China (2009ZX08009-064B)the Natinal NaturalScience Foundation of China(30871570)the Scientific Fund to Graduate Re-search and Innovation Projects of China Agricultural University (15059201-kycx09018)
文摘Enhanced stem nematode resistance of transgenic sweetpotato (cv. Lizixiang) was achieved using Oryzacystatin-I (OCI) gene with Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strain EHA105 harbors a binary vector pCAMBIA1301 with OCI gene, gusA gene and hptII gene. Selection culture was conducted using 25 mg L-1 hygromycin. A total of 1 715 plants were produced from the inoculated 1 450 cell aggregates of Lizixiang via somatic embryogenesis. GUS assay and PCR analysis of the putative transgenic plants randomly sampled showed that 90.54% of them were transgenic plants. Transgenic plants exhibited significantly enhanced resistance to stem nematodes compared to the untransformed control plants by the field evaluation with stem nematodes. Stable integration of the OCI gene into the genome of resistant transgenic plants was confirmed by Southern blot analysis, and the copy number of integrated OCI gene ranged from 1 to 4. Transgene overexpression in stem nematode-resistant plants was demonstrated by quantitative real-time PCR analysis. This study provides a way for improving stem nematode resistance in sweetpotato.
基金supported by the National Key Research and Development Program of China(2019YFD1001302 and 2019YFD1001300)the China Agriculture Research System of MOF and MARA(CARS-10-Sweetpotato)。
文摘Geranylgeranyl pyrophosphate synthase(GGPS) plays an important role in the biosynthesis of carotenoids. In a previous study, the IbGGPS gene was isolated from a sweetpotato, Ipomoea batatas(L.) Lam., line Nongdafu 14 with high carotenoid contents, but its role and underlying mechanisms in carotenoid biosynthesis in sweetpotato were not investigated. In the present study, the IbGGPS gene was introduced into a sweetpotato cv. Lizixiang and the contents of β-carotene, β-cryptoxanthin, zeaxanthin and lutein were significantly increased in the storage roots of the IbGGPSoverexpressing sweetpotato plants. Further analysis showed that IbGGPS gene overexpression systematically upregulated the genes involved in the glycolytic, 2-C-methyl-D-erythritol-4-phosphate(MEP) and carotenoid pathways,which increased the carotenoid contents in the transgenic plants. These results indicate that the IbGGPS gene has the potential for use in improving the carotenoid contents in sweetpotato and other plants.
基金the National Key R&D Program of China,2019YFD1001300 and 2019YFD1001305China Agriculture Research System of MOF and MARA,China.
文摘Fusarium wilt,a disease caused by Fusarium oxysporum f.sp batatas(Fob)is an important disease in sweet potato production.Using endophytic bacteria for biological control of sweet potato diseases is one of the important ways.A Bacillus subtilis with antagonistic effect on Fusarium wilt of sweet potato was isolated from soil by confrontation culture.According to the biological characteristics,16S rDNA sequence analysis,and physiological and biochemical analysis,the Bacillus subtilis HAAS01 was named.A pot experiment was conducted for the biological control experiment of strain HAAS01,and the endogenous hormone content,antioxidant enzyme activity,soluble protein content,and related gene expressions of sweet potato plants were detected.The results showed that the HAAS01 strain could promote the production of endogenous hormones and resist the infection of plant diseases together with defensive enzymes and upregulation of related gene expressions.In summary,Bacillus subtilis HAAS01 was effective in controlling Fusarium wilt of sweet potato and has potential for application and development.
文摘利用文献数据库客观分析全球甘薯[Ipomoea batatas(L.)Lam.]研究现状与发展趋势,以期为甘薯研究工作提供参考。利用Web of ScienceTM核心集数据库,采用文献计量学方法对2009—2018年甘薯研究文献进行统计分析。结果表明,全球甘薯研究论文产出量呈上升趋势,文章质量逐年提高。发文量位列前三的有中国、美国和韩国,美国等发达国家在该领域影响力大,高被引论文大多出自欧美国家。近几年亚洲逐渐成为甘薯研究的新中心,中国的高产活跃作者较多,但距离世界先进水平仍存在一定的差距。美国农业部和中国农业科学院、中国农业大学等机构的甘薯研究论文影响力较大。当前主要研究方向是分子生物学、遗传学和食品科学等方面,学科之间、国家(地区)之间的合作日益紧密。