This paper reported firstly successful cloning of lycopene ε-cyclase (lbLCYe) gene from sweetpotato, lpomoea batatas (L.) Lam. Using rapid amplification of cDNA ends (RACE), lbLCYe gene was cloned from sweetpot...This paper reported firstly successful cloning of lycopene ε-cyclase (lbLCYe) gene from sweetpotato, lpomoea batatas (L.) Lam. Using rapid amplification of cDNA ends (RACE), lbLCYe gene was cloned from sweetpotato cv. Nongdafu 14 with high carotenoid content. The 1 805 bp cDNA sequence oflbLCYe gene contained a 1236 bp open reading frame (ORF) encoding a 411 amino acids polypeptide with a molecular weight of 47 kDa and an isoelectric point (pI) of 6.95. IbLCYe protein contained one potential lycopene ε-cyclase domain and one potential FAD (flavinadenine dinucleotide)/NAD(P) (nicotinamide adenine dinucleotide phosphate)-binding domain, indicating that this protein shares the typical characteristics of LCYe proteins. The gDNA oflbLCYe gene was 4 029 bp and deduced to contain 5 introns and 6 exons. Real-time quantitative PCR analysis revealed that the expression level of IbLCYe gene was significantly higher in the storage roots of Nongdafu 14 than those in the leaves and stems. Transgenic tobacco (cv. Wisconsin 38) expressing [bLCYe gene accumulated significantly more ^-carotene compared to the untransformed control plants. These results showed that lbLCYe gene has an important function for the accumulation of carotenoids of sweetpotato.展开更多
Sequence-related amplification polymorphism (SRAP) markers closely linked to stem nematode resistance gene were developed in sweetpotato, lpomoea batatas (L.) Lam. Using bulked segregant analysis (BSA), 200 SRAP...Sequence-related amplification polymorphism (SRAP) markers closely linked to stem nematode resistance gene were developed in sweetpotato, lpomoea batatas (L.) Lam. Using bulked segregant analysis (BSA), 200 SRAP primer combinations were screened with the resistant and susceptible bulked DNA from the 196 progenies of an F1 single-cross population of resistant parent Xu 781xsusceptible parent Xushu 18, 77 of them showed polymorphic bands between resistant and susceptible DNA. Primer combinations detecting polymorphism between the two bulks were used to screen both parents and 10 individuals from each of the bulks. The results showed that primer combination A9B4 produced 3 specific bands in the resistant plants but not in the susceptible plants, suggesting that the markers, named Nspl, Nsp2 and Nsp3, respectively, linked to a gene for stem nematode resistance. Primer combination A3B6 also produced a SRAP marker named Nsp4 linking to the resistance gene. Amplified analysis of the 196 F1 individuals indicated that the genetic distance between these markers and the resistance gene was 4.7, 4.7, 6.3, and 9.6 cM, respectively.展开更多
Sweetpotato (Ipomoea batatas (L.) Lam.) breeding is challenging due to its genetic complexity. In the present study, interval mapping (IM) and multiple quantitative trait locus (QTL) model (MQM) analysis wer...Sweetpotato (Ipomoea batatas (L.) Lam.) breeding is challenging due to its genetic complexity. In the present study, interval mapping (IM) and multiple quantitative trait locus (QTL) model (MQM) analysis were used to identify QTLs for starch content with a mapping population consisting of 202 F1 individuals of a cross between Xushu 18, a cultivar susceptible to stem nematodes, with high yield and moderate starch, and Xu 781, which is resistant to stem nematodes, has low yield and high starch content. Six QTLs for starch content were mapped on six linkage groups of the Xu 781 map, explaining 9.1-38.8% of the variation. Especially, one of them, DMFN 4, accounted for 38.8% of starch content variation, which is the QTL that explains the highest phenotypic variation detected to date in sweetpotato. All of the six QTLs had a positive effect on the variation of the starch content, which indicated the inheritance derived from the parent Xu 781. Two QTLs for starch content were detected on two linkage groups of the Xushu 18 map, explaining 14.3 and 16.1% of the variation, respectively. They had a negative effect on the variation, indicating the inheritance derived from Xu 781. Seven of eight QTLs were co-localized with a single marker. This is the first report on the development of QTLs co-localized with a single marker in sweetpotato. These QTLs and their co-localized markers may be used in marker-assisted breeding for the starch content of sweetpotato.展开更多
Allelopathic compounds have the potential to inhibit the growth and development of other organisms in a diverse manner ranging from shifting nutrients and enhancing their growth to inflicting diseases. In addition, th...Allelopathic compounds have the potential to inhibit the growth and development of other organisms in a diverse manner ranging from shifting nutrients and enhancing their growth to inflicting diseases. In addition, these compounds influence seedling growth and seed germination of various crops. The goal of this study was to identify and quantify different allelochemicals in various sweet potato cultivars through high-performance liquid chromatography techniques. Selected sweet potato slips (weight: 2.0 - 2.5 grams/slip) were propagated in separate glass tubes filled with 10.0 mL distilled water. Water extract from each glass tube was collected after 2, 4, and 6 weeks after transplanting (WAP) to identify and quantify allelochemical compounds by comparing their peaks with the retention time of standards. Results show that the concentration of allelochemicals in water extract was increased from 2 to 4 WAP but remained constant in the sixth week. Quantitative analysis revealed that the amount of chlorogenic acid was higher in all sweet potato cultivars compared to other allelochemicals. Some sweet potato cultivars, A5 and A39, exhibited higher allelopathy (18.28 - 19.37 ppm/slip) and reduced the height and biomass of Palmer amaranth the most due to the presence of increased concentration of combined allelochemicals, while other cultivars produced lesser allelochemicals (10.90 ppm/slip) and did not reduce the growth of the weed species. Allelopathic sweet potato cultivars high in chlorogenic acid production can effectively suppress Palmer amaranth with minimal dependence on chemicals to manage weeds and harmful pests under sustainable agricultural system.展开更多
In response to the malnutrition problem affecting children in Congo Brazzaville, we made three cooking-type infant flours from <i>Treculia obovoidea</i>, <i>Terminalia catappa </i>L. almonds an...In response to the malnutrition problem affecting children in Congo Brazzaville, we made three cooking-type infant flours from <i>Treculia obovoidea</i>, <i>Terminalia catappa </i>L. almonds and <i>Ipomoea batatas</i> L. leaves. The nutritional quality of the three infant flours we developed indicates 11.07% - 12.47% protein content, 9.92% - 14.87% fat content, 58.85% - 68.06% carbohydrate content, 1.50% - 2.18% ash and an energy intake varying between 399.84 and 439.37 Kcal. Functionally, our prepared flours have a water absorption capacity between 219.05 and 317.86 mL/g, an oil absorption capacity of 0.19 mL/g, a water solubility index varying from 29.66 - 41.03 and a swelling capacity of 250% - 320%.展开更多
用甘薯品种农林17号(中紫)的叶柄分离原生质体,对其在添加各种浓度的萘乙酸和激动素的改良细胞薄层培养基中进行悬浮培养。培养1~2 d 后,原生质体再生细胞壁,培养2~3 d 后,再生细胞发生第一次分裂,持续的细胞分裂形成小愈伤组织。悬...用甘薯品种农林17号(中紫)的叶柄分离原生质体,对其在添加各种浓度的萘乙酸和激动素的改良细胞薄层培养基中进行悬浮培养。培养1~2 d 后,原生质体再生细胞壁,培养2~3 d 后,再生细胞发生第一次分裂,持续的细胞分裂形成小愈伤组织。悬浮培养的结果表明萘乙酸和激动素的适宜浓度分别为2.0~5.0mg/L 和1.0~5.0mg/L。此后,将小愈伤组织转移到MS 固体培养基上培养,小愈伤组织迅速生长。本试验达到根的分化.展开更多
基金supported by the China Agriculture Research System (Sweetpotato)the National High-Tech Research and Development Project of China(2011AA100607 and 2012AA101204)
文摘This paper reported firstly successful cloning of lycopene ε-cyclase (lbLCYe) gene from sweetpotato, lpomoea batatas (L.) Lam. Using rapid amplification of cDNA ends (RACE), lbLCYe gene was cloned from sweetpotato cv. Nongdafu 14 with high carotenoid content. The 1 805 bp cDNA sequence oflbLCYe gene contained a 1236 bp open reading frame (ORF) encoding a 411 amino acids polypeptide with a molecular weight of 47 kDa and an isoelectric point (pI) of 6.95. IbLCYe protein contained one potential lycopene ε-cyclase domain and one potential FAD (flavinadenine dinucleotide)/NAD(P) (nicotinamide adenine dinucleotide phosphate)-binding domain, indicating that this protein shares the typical characteristics of LCYe proteins. The gDNA oflbLCYe gene was 4 029 bp and deduced to contain 5 introns and 6 exons. Real-time quantitative PCR analysis revealed that the expression level of IbLCYe gene was significantly higher in the storage roots of Nongdafu 14 than those in the leaves and stems. Transgenic tobacco (cv. Wisconsin 38) expressing [bLCYe gene accumulated significantly more ^-carotene compared to the untransformed control plants. These results showed that lbLCYe gene has an important function for the accumulation of carotenoids of sweetpotato.
基金supported by China Agriculture Research System (CARS-11, Sweetpotato)the National 863 Program of China (2012AA101204)
文摘Sequence-related amplification polymorphism (SRAP) markers closely linked to stem nematode resistance gene were developed in sweetpotato, lpomoea batatas (L.) Lam. Using bulked segregant analysis (BSA), 200 SRAP primer combinations were screened with the resistant and susceptible bulked DNA from the 196 progenies of an F1 single-cross population of resistant parent Xu 781xsusceptible parent Xushu 18, 77 of them showed polymorphic bands between resistant and susceptible DNA. Primer combinations detecting polymorphism between the two bulks were used to screen both parents and 10 individuals from each of the bulks. The results showed that primer combination A9B4 produced 3 specific bands in the resistant plants but not in the susceptible plants, suggesting that the markers, named Nspl, Nsp2 and Nsp3, respectively, linked to a gene for stem nematode resistance. Primer combination A3B6 also produced a SRAP marker named Nsp4 linking to the resistance gene. Amplified analysis of the 196 F1 individuals indicated that the genetic distance between these markers and the resistance gene was 4.7, 4.7, 6.3, and 9.6 cM, respectively.
基金supported by the China Agriculture Research System(CARS-11,Sweetpotato)the National High-Tech R&D Program of China(2012AA101204)
文摘Sweetpotato (Ipomoea batatas (L.) Lam.) breeding is challenging due to its genetic complexity. In the present study, interval mapping (IM) and multiple quantitative trait locus (QTL) model (MQM) analysis were used to identify QTLs for starch content with a mapping population consisting of 202 F1 individuals of a cross between Xushu 18, a cultivar susceptible to stem nematodes, with high yield and moderate starch, and Xu 781, which is resistant to stem nematodes, has low yield and high starch content. Six QTLs for starch content were mapped on six linkage groups of the Xu 781 map, explaining 9.1-38.8% of the variation. Especially, one of them, DMFN 4, accounted for 38.8% of starch content variation, which is the QTL that explains the highest phenotypic variation detected to date in sweetpotato. All of the six QTLs had a positive effect on the variation of the starch content, which indicated the inheritance derived from the parent Xu 781. Two QTLs for starch content were detected on two linkage groups of the Xushu 18 map, explaining 14.3 and 16.1% of the variation, respectively. They had a negative effect on the variation, indicating the inheritance derived from Xu 781. Seven of eight QTLs were co-localized with a single marker. This is the first report on the development of QTLs co-localized with a single marker in sweetpotato. These QTLs and their co-localized markers may be used in marker-assisted breeding for the starch content of sweetpotato.
文摘Allelopathic compounds have the potential to inhibit the growth and development of other organisms in a diverse manner ranging from shifting nutrients and enhancing their growth to inflicting diseases. In addition, these compounds influence seedling growth and seed germination of various crops. The goal of this study was to identify and quantify different allelochemicals in various sweet potato cultivars through high-performance liquid chromatography techniques. Selected sweet potato slips (weight: 2.0 - 2.5 grams/slip) were propagated in separate glass tubes filled with 10.0 mL distilled water. Water extract from each glass tube was collected after 2, 4, and 6 weeks after transplanting (WAP) to identify and quantify allelochemical compounds by comparing their peaks with the retention time of standards. Results show that the concentration of allelochemicals in water extract was increased from 2 to 4 WAP but remained constant in the sixth week. Quantitative analysis revealed that the amount of chlorogenic acid was higher in all sweet potato cultivars compared to other allelochemicals. Some sweet potato cultivars, A5 and A39, exhibited higher allelopathy (18.28 - 19.37 ppm/slip) and reduced the height and biomass of Palmer amaranth the most due to the presence of increased concentration of combined allelochemicals, while other cultivars produced lesser allelochemicals (10.90 ppm/slip) and did not reduce the growth of the weed species. Allelopathic sweet potato cultivars high in chlorogenic acid production can effectively suppress Palmer amaranth with minimal dependence on chemicals to manage weeds and harmful pests under sustainable agricultural system.
文摘In response to the malnutrition problem affecting children in Congo Brazzaville, we made three cooking-type infant flours from <i>Treculia obovoidea</i>, <i>Terminalia catappa </i>L. almonds and <i>Ipomoea batatas</i> L. leaves. The nutritional quality of the three infant flours we developed indicates 11.07% - 12.47% protein content, 9.92% - 14.87% fat content, 58.85% - 68.06% carbohydrate content, 1.50% - 2.18% ash and an energy intake varying between 399.84 and 439.37 Kcal. Functionally, our prepared flours have a water absorption capacity between 219.05 and 317.86 mL/g, an oil absorption capacity of 0.19 mL/g, a water solubility index varying from 29.66 - 41.03 and a swelling capacity of 250% - 320%.
文摘用甘薯品种农林17号(中紫)的叶柄分离原生质体,对其在添加各种浓度的萘乙酸和激动素的改良细胞薄层培养基中进行悬浮培养。培养1~2 d 后,原生质体再生细胞壁,培养2~3 d 后,再生细胞发生第一次分裂,持续的细胞分裂形成小愈伤组织。悬浮培养的结果表明萘乙酸和激动素的适宜浓度分别为2.0~5.0mg/L 和1.0~5.0mg/L。此后,将小愈伤组织转移到MS 固体培养基上培养,小愈伤组织迅速生长。本试验达到根的分化.