综述了基于原子力显微镜的红外光谱(Atomic force microscopy-based infrared spectroscopy,AFM-IR)的特点,测量和检测原理及其技术优势。AFM-IR是能在纳米尺度对不同材料进行表征的新兴技术,该技术可以以远低于常规光学衍射极限的分辨...综述了基于原子力显微镜的红外光谱(Atomic force microscopy-based infrared spectroscopy,AFM-IR)的特点,测量和检测原理及其技术优势。AFM-IR是能在纳米尺度对不同材料进行表征的新兴技术,该技术可以以远低于常规光学衍射极限的分辨率检测材料的化学成分,同时提供不同组分的分布图谱。AFM-IR的原理是利用原子力显微镜(AFM)悬臂梁的振动检测样本因吸收红外辐射脉冲产生的热膨胀,因此AFM-IR在继承了AFM的纳米级分辨率的基础上结合了红外光谱的化学分析能力,克服了二者原有的缺点并实现了优势互补。这项新技术在过去十多年备受关注并获得了长足的发展,因其操作简便、系统稳定、样品制备要求相对较低,以及与红外光谱直接相关而无需数学建模或额外数据后续处理,已被广泛用于材料科学、生命科学等诸多领域。展开更多
Recently, many studies propose the use of ultra-wideband technology for passive and active radio frequency identification systems as well as for wireless sensor networks due to its numerous advantages. By harvesting t...Recently, many studies propose the use of ultra-wideband technology for passive and active radio frequency identification systems as well as for wireless sensor networks due to its numerous advantages. By harvesting these advantages of IR-UWB technology at the physical-layer design, this paper proposes that a cross layer architecture platform can be considered as a good integrator for different wireless short-ranges indoor protocols into a universal smart wireless-tagged architecture with new promising applications in cognitive radio for future applications. Adaptive transmission algorithms have been studied to show the trade-off between different specific QoS requirements, transmission rates and distances at the physical layer level and this type of dynamic optimization and reconfiguration leads to the cross-layer design proposal in the paper. Studies from both theoretical simulation and statistical indoor environments experiments are considered as a proof of concept for the proposed architecture.展开更多
本文研究高速IR-UWB通信中选择性合并Rake接收机(Srake[1])的接收性能。研究结果表明在高速IR-UWB通信中,当合并分支数目增加时,一般SRake接收机的性能不随分集增益升高而变好。本文提出一种基于错误图样正交分集(Orthogonal Diversity ...本文研究高速IR-UWB通信中选择性合并Rake接收机(Srake[1])的接收性能。研究结果表明在高速IR-UWB通信中,当合并分支数目增加时,一般SRake接收机的性能不随分集增益升高而变好。本文提出一种基于错误图样正交分集(Orthogonal Diversity Based on Error Samples,ODBES)的SRake接收方法,通过对错误图样的处理消除多径之间的相关性,增加合并信噪比,进而提高系统性能。分析和仿真结果表明,该改进的方法对密集多径环境下高速IR-UWB通信中SRake接收机性能有明显改善,对IR-UWB接收机的设计有实际的应用价值。展开更多
文摘综述了基于原子力显微镜的红外光谱(Atomic force microscopy-based infrared spectroscopy,AFM-IR)的特点,测量和检测原理及其技术优势。AFM-IR是能在纳米尺度对不同材料进行表征的新兴技术,该技术可以以远低于常规光学衍射极限的分辨率检测材料的化学成分,同时提供不同组分的分布图谱。AFM-IR的原理是利用原子力显微镜(AFM)悬臂梁的振动检测样本因吸收红外辐射脉冲产生的热膨胀,因此AFM-IR在继承了AFM的纳米级分辨率的基础上结合了红外光谱的化学分析能力,克服了二者原有的缺点并实现了优势互补。这项新技术在过去十多年备受关注并获得了长足的发展,因其操作简便、系统稳定、样品制备要求相对较低,以及与红外光谱直接相关而无需数学建模或额外数据后续处理,已被广泛用于材料科学、生命科学等诸多领域。
文摘Recently, many studies propose the use of ultra-wideband technology for passive and active radio frequency identification systems as well as for wireless sensor networks due to its numerous advantages. By harvesting these advantages of IR-UWB technology at the physical-layer design, this paper proposes that a cross layer architecture platform can be considered as a good integrator for different wireless short-ranges indoor protocols into a universal smart wireless-tagged architecture with new promising applications in cognitive radio for future applications. Adaptive transmission algorithms have been studied to show the trade-off between different specific QoS requirements, transmission rates and distances at the physical layer level and this type of dynamic optimization and reconfiguration leads to the cross-layer design proposal in the paper. Studies from both theoretical simulation and statistical indoor environments experiments are considered as a proof of concept for the proposed architecture.
文摘本文研究高速IR-UWB通信中选择性合并Rake接收机(Srake[1])的接收性能。研究结果表明在高速IR-UWB通信中,当合并分支数目增加时,一般SRake接收机的性能不随分集增益升高而变好。本文提出一种基于错误图样正交分集(Orthogonal Diversity Based on Error Samples,ODBES)的SRake接收方法,通过对错误图样的处理消除多径之间的相关性,增加合并信噪比,进而提高系统性能。分析和仿真结果表明,该改进的方法对密集多径环境下高速IR-UWB通信中SRake接收机性能有明显改善,对IR-UWB接收机的设计有实际的应用价值。