Oxygen evolution reaction(OER)is a kinetically harsh four-electron anode reaction that requires a large overpotential to provide current and is of great importance in renewable electrochemical technique.Ir/Rubased per...Oxygen evolution reaction(OER)is a kinetically harsh four-electron anode reaction that requires a large overpotential to provide current and is of great importance in renewable electrochemical technique.Ir/Rubased perovskite oxides hold great significance for application as OER electrocatalysts,due to that their multimetal-oxide forms can reduce the use of noble metals,and their compositional tunability can modulate the electronic structure and optimize OER performance.However,high operating potentials and corrosive environments pose a serious challenge to the development of durable Ir-based and Ru-based perovskite electrocatalysts.Tremendous efforts have been dedicated to improving the Ir/Ru-based perovskite activity to enhance the efficiency;however,progress in improving the durability of Ir/Ru-based perovskite electrocatalysts has been rather limited.In this review,the recent research progress of Ir/Ru-based perovskites is reviewed from the perspective of heteroatom doping,structural modulation,and formation of heterostructures.The dissolution mechanism studies of Ir/Ru and experimental attempts to improve the durability of Ir/Ru-based perovskite electrocatalysts are discussed.Challenges and outlooks for further developing Ru-and Irbased perovskite oxygen electrocatalysts are also presented.展开更多
Water electrolysis using proton-exchange membranes is one of the most promising technologies for carbon-neutral and sustainable energy production.Generally,the overall efficiency of water splitting is limited by the o...Water electrolysis using proton-exchange membranes is one of the most promising technologies for carbon-neutral and sustainable energy production.Generally,the overall efficiency of water splitting is limited by the oxygen evolution reaction(OER).Nevertheless,a trade-off between activity and stability exists for most electrocatalytic materials in strong acids and oxidizing media,and the development of efficient and stable catalytic materials has been an important focus of research.In this view,gaining in-depth insights into the OER system,particularly the interactions between reaction intermediates and active sites,is significantly important.To this end,this review introduces the fundamentals of the OER over Ru-based materials,including the conventional adsorbate evolution mechanism,lattice oxygen oxidation mechanism,and oxide path mechanism.Moreover,the up-to-date progress of representative modifications for improving OER performance is further discussed with reference to specific mechanisms,such as tuning of geometric,electronic structures,incorporation of proton acceptors,and optimization of metal-oxygen covalency.Finally,some valuable insights into the challenges and opportunities for OER electrocatalysts are provided with the aim to promote the development of next-generation catalysts with high activity and excellent stability.展开更多
基金financially supported by the Key Research and Development Program of Hainan Province(No.ZDYF2022GXJS006)the National Natural Science Foundation of China(Nos.52231008,52201009 and 52001227)+2 种基金Hainan Provincial Natural Science Foundation of China(No.223RC401)the Education Department of Hainan Province(No.Hnky2023ZD-2)the Starting Research Funds of the Hainan University of China(Nos.KYQD(ZR)-21105 and XJ2300002951)。
文摘Oxygen evolution reaction(OER)is a kinetically harsh four-electron anode reaction that requires a large overpotential to provide current and is of great importance in renewable electrochemical technique.Ir/Rubased perovskite oxides hold great significance for application as OER electrocatalysts,due to that their multimetal-oxide forms can reduce the use of noble metals,and their compositional tunability can modulate the electronic structure and optimize OER performance.However,high operating potentials and corrosive environments pose a serious challenge to the development of durable Ir-based and Ru-based perovskite electrocatalysts.Tremendous efforts have been dedicated to improving the Ir/Ru-based perovskite activity to enhance the efficiency;however,progress in improving the durability of Ir/Ru-based perovskite electrocatalysts has been rather limited.In this review,the recent research progress of Ir/Ru-based perovskites is reviewed from the perspective of heteroatom doping,structural modulation,and formation of heterostructures.The dissolution mechanism studies of Ir/Ru and experimental attempts to improve the durability of Ir/Ru-based perovskite electrocatalysts are discussed.Challenges and outlooks for further developing Ru-and Irbased perovskite oxygen electrocatalysts are also presented.
基金partly supported by the National Natural Science Foundation of China(NSFCs,52202050,52122308,21905253,51973200)the China Postdoctoral Science Foundation(2022TQ0286)the Natural Science Foundation of Henan(202300410372)。
文摘Water electrolysis using proton-exchange membranes is one of the most promising technologies for carbon-neutral and sustainable energy production.Generally,the overall efficiency of water splitting is limited by the oxygen evolution reaction(OER).Nevertheless,a trade-off between activity and stability exists for most electrocatalytic materials in strong acids and oxidizing media,and the development of efficient and stable catalytic materials has been an important focus of research.In this view,gaining in-depth insights into the OER system,particularly the interactions between reaction intermediates and active sites,is significantly important.To this end,this review introduces the fundamentals of the OER over Ru-based materials,including the conventional adsorbate evolution mechanism,lattice oxygen oxidation mechanism,and oxide path mechanism.Moreover,the up-to-date progress of representative modifications for improving OER performance is further discussed with reference to specific mechanisms,such as tuning of geometric,electronic structures,incorporation of proton acceptors,and optimization of metal-oxygen covalency.Finally,some valuable insights into the challenges and opportunities for OER electrocatalysts are provided with the aim to promote the development of next-generation catalysts with high activity and excellent stability.