Oxygen evolution reaction(OER)in acid media has been intensively studied recently for its important role in proton exchange membrane electrolyzers.CeO_(2)-based nanomaterials have been widely used in various applicati...Oxygen evolution reaction(OER)in acid media has been intensively studied recently for its important role in proton exchange membrane electrolyzers.CeO_(2)-based nanomaterials have been widely used in various applications for their redox properties,oxygen vacancy,and surface activity.CeO_(2)-based nanocatalysts also exhibit superior catalytic performance in OER in acid media.Herein,we fabricated a highly effi cient catalytic interface between IrO x and CeO_(2)(IrO x/CeO_(2)),which showed a boosting OER activity with an overpotential of 217 mV at the current density of 10 mA/cm 2 and long-term stability for 10 h in 0.5 mol/L H_(2)SO_(4),which were better than those of many reported catalysts.The in situ diff erential electrochemical mass spectrometry results demonstrated that IrO x/CeO_(2)and the commercial IrO 2(IrO 2-com)followed the adsorbate evolution mechanism,whereas the pure CeO_(2)surface followed the lattice oxygen oxidation mechanism under the same conditions for OER.These indicated that the interface of IrO x and CeO_(2)improved mass transfer effi ciency and reactivity,which also prevented the lattice oxygen evolution in the CeO_(2)structure and protected the whole structure.This work fi nds a new way for OER in acid media catalyzed by CeO_(2)-based nanocatalysts and promotes the design strategy for other CeO_(2)-based nanostructures.展开更多
基金funded by the National Key R&D Program of China(2021YFA1501101)the National Natural Science Foundation of China(NSFC)(Nos.21931001 and 21922105)+5 种基金the Special Fund Project of Guiding Scientifi c and Technological Inno-vation Development of Gansu Province(No.2019ZX-04)the 111 Project(B20027)“Innovation Star”of Outstanding Graduate Students in Gansu Province(No.2023CXZX-083)as well as by the Fundamental Research Funds for the Central Universities(Nos.lzu-jbky-2021-pd04,lzujbky-2021-sp41,and lzujbky-2021-it12)Jie Yin acknowledges the support of the China Postdoctoral Science Founda-tion(No.2021M691375)the China National Postdoctoral Program for Innovative Talents(No.BX20200157).
文摘Oxygen evolution reaction(OER)in acid media has been intensively studied recently for its important role in proton exchange membrane electrolyzers.CeO_(2)-based nanomaterials have been widely used in various applications for their redox properties,oxygen vacancy,and surface activity.CeO_(2)-based nanocatalysts also exhibit superior catalytic performance in OER in acid media.Herein,we fabricated a highly effi cient catalytic interface between IrO x and CeO_(2)(IrO x/CeO_(2)),which showed a boosting OER activity with an overpotential of 217 mV at the current density of 10 mA/cm 2 and long-term stability for 10 h in 0.5 mol/L H_(2)SO_(4),which were better than those of many reported catalysts.The in situ diff erential electrochemical mass spectrometry results demonstrated that IrO x/CeO_(2)and the commercial IrO 2(IrO 2-com)followed the adsorbate evolution mechanism,whereas the pure CeO_(2)surface followed the lattice oxygen oxidation mechanism under the same conditions for OER.These indicated that the interface of IrO x and CeO_(2)improved mass transfer effi ciency and reactivity,which also prevented the lattice oxygen evolution in the CeO_(2)structure and protected the whole structure.This work fi nds a new way for OER in acid media catalyzed by CeO_(2)-based nanocatalysts and promotes the design strategy for other CeO_(2)-based nanostructures.