In order to investigate the development of forest soils formed on loess, six representative modern soil pedons were selected along a precipitation gradient extending from eastern Golestan(mean annual precipitation, MA...In order to investigate the development of forest soils formed on loess, six representative modern soil pedons were selected along a precipitation gradient extending from eastern Golestan(mean annual precipitation, MAP = 500 mm)to eastern Mazandaran Provinces(MAP = 800 mm).Physiochemical, micromorphological and magnetic properties, as well as clay mineralogy of soils were studied using standard methods. Soils are mainly classified as Alfisols and Mollisols. Downward decalcification and the subsequent clay illuviation were the main criteria of soil development in all study areas. Pedogenic magnetic susceptibility of pedons studied varied systematically across the precipitation gradient in Northern Iran, increasing from 14.66 ×10-8 m3 kg-1 at the eastern part to 83.75 × 10-8 m3 kg-1 at the western margin of this transect. The frequencydependent magnetic susceptibility showed an increasing trend with rainfall as well. The micromorphological study of soils indicated that there is a positive relationship between climate gradient (increasing rainfall) and the micromorphological index of soil development(MISECA). The area and thickness of clay coatings showed an increasing trend with rainfall. Grain size analysis indicates that pedogenic processes are responsible for changing original grain size distribution of loess in our soils.The correlation achieved among modern soil properties and precipitation could be applied to the buried paleosols in the whole study area to refer degree of paleosol development and to reconstruct the paleoclimate.展开更多
文摘In order to investigate the development of forest soils formed on loess, six representative modern soil pedons were selected along a precipitation gradient extending from eastern Golestan(mean annual precipitation, MAP = 500 mm)to eastern Mazandaran Provinces(MAP = 800 mm).Physiochemical, micromorphological and magnetic properties, as well as clay mineralogy of soils were studied using standard methods. Soils are mainly classified as Alfisols and Mollisols. Downward decalcification and the subsequent clay illuviation were the main criteria of soil development in all study areas. Pedogenic magnetic susceptibility of pedons studied varied systematically across the precipitation gradient in Northern Iran, increasing from 14.66 ×10-8 m3 kg-1 at the eastern part to 83.75 × 10-8 m3 kg-1 at the western margin of this transect. The frequencydependent magnetic susceptibility showed an increasing trend with rainfall as well. The micromorphological study of soils indicated that there is a positive relationship between climate gradient (increasing rainfall) and the micromorphological index of soil development(MISECA). The area and thickness of clay coatings showed an increasing trend with rainfall. Grain size analysis indicates that pedogenic processes are responsible for changing original grain size distribution of loess in our soils.The correlation achieved among modern soil properties and precipitation could be applied to the buried paleosols in the whole study area to refer degree of paleosol development and to reconstruct the paleoclimate.