At UTC 2017-11-12 18:18:17,an Mw7.3 earthquake occurred at the border between Iran and Iraq(location 34.886°N,45.941°E,depth 23 km according to USGS).We carried out focal mechanism and rupture process studie...At UTC 2017-11-12 18:18:17,an Mw7.3 earthquake occurred at the border between Iran and Iraq(location 34.886°N,45.941°E,depth 23 km according to USGS).We carried out focal mechanism and rupture process studies with the data from IRIS data center,using 26 far-field P-waveforms and 25 SH-waveforms with high S/N ratio and relatively even azimuth coverage(epicentral distance)in a point source model to invert for the focal mechanism solution;the result(Figure1)was used to construct a finite fault model for rupture process inversion(Yao and Ji,1997;Wang et al.,2008),resulting in a preliminary slip distribution of this earthquake(Figures 2-4).The calculated seismic moment is 1.1×1020 N·m,Mw=7.3.The maximum slip is about 700 cm.展开更多
The D'' layer,which is located atop the core–mantle boundary,has long been an area of focus for global seismology studies. A widely used approach to study the discontinuities in the D'' layer involves the use of ...The D'' layer,which is located atop the core–mantle boundary,has long been an area of focus for global seismology studies. A widely used approach to study the discontinuities in the D'' layer involves the use of the SdS phases between the S and ScS phases,which requires that certain stringent conditions be satisfied with respect to an epicentral distance and earthquake depth. Therefore,this approach is only practical for investigating the presence and topography of velocity interfaces in certain local regions around the world. The Russia–Kazakhstan border region has been a ‘‘blind spot'' with respect to this detection method. The seismic network deployed in the northeastern margin of the Tibetan Plateau has recorded relatively clear SdS phases for the MS6.3 earthquake that occurred in Spain on April 11,2010,allowing this blind spot to be studied. This paper compares the observed waveforms and synthetics and uses the travel times of the relevant phases to obtain a D'' discontinuity depth between2,610 and 2,740 km in the examined area. This study provides the first results regarding the depth of the D'' layer discontinuity for this region and represents an important addition to the global studies of the D'' layer.展开更多
On October 12th,2019,a MS5.2 earthquake occurred in Beiliu City,Guangxi Zhuang Autonomous Region,China,with a focal depth of 10 km. The epicenter is located in the junction of Guangxi and Guangdong where the moderate-...On October 12th,2019,a MS5.2 earthquake occurred in Beiliu City,Guangxi Zhuang Autonomous Region,China,with a focal depth of 10 km. The epicenter is located in the junction of Guangxi and Guangdong where the moderate-strong earthquakes are relatively active. The highest intensity of this earthquake is estimated up to Ⅵ besides the isoseismic line showed an ellipse shape with a long axis trend in the NW direction.The aftershocks are not evenly distributed. The parameters of the focal mechanism solutions are: strike 346°,dip 85°,rake 19° for the nodal planeⅠ,and strike 254°,dip 71°,rake 175° for the nodal planeⅡ. The type of the coseismic fault is strikeslip. After analyzing these results above and the active faults near the epicenter,we get that the nodal planeⅠ is interpreted as the coseismic rupture plane and the BamaBobai Fault is a seismogenic structure of MS5.2 Beiliu earthquake.展开更多
The border areas of the Tibetan Plateau and the neighboring mountainous areas have a high incidence of earthquakes with a magnitude greater than M<sub>s</sub> 5.0, as well as having a dense distribution of...The border areas of the Tibetan Plateau and the neighboring mountainous areas have a high incidence of earthquakes with a magnitude greater than M<sub>s</sub> 5.0, as well as having a dense distribution of geological disasters such as collapses, landslides, and debris flows. Revealing the post-disaster economic development and recovery process is very important for enhancing disaster prevention and response capacity in order to formulate control policies and recovery methods for post-disaster economic reconstruction based on economic resilience. Using long-term socioeconomic data and the autoregressive integrated moving average (ARIMA) model, this paper calculated the economic resilience index of the areas most severely affected by the Wenchuan Earthquake of 2008 and adopted the improved variable returns to scale (VRS) date envelopment analysis (DEA) model and the Malmquist productivity index to analyze the efficiency and effect of annual post-disaster recovery. The results show that: (1) the economic resilience index of the areas most severely affected by the Wenchuan Earthquake was 0.877. The earthquake resulted in a short-term economic recession in the affected areas, but the economy returned to pre-quake levels within two years. In addition, the industrial economy was less resilient than agriculture and the service industry. (2) The comprehensive economic recovery efficiency of the disaster-stricken area in the year following the disaster was 0.603. The comprehensive efficiency, the pure technical efficiency, and the scale efficiency of the plain and hilly areas were significantly greater than those of the plateau and mountain areas. (3) The annual fluctuation in total factor productivity (TFP) following the disaster was considerable, and the economic recovery efficiency decreased significantly, resulting in a short-term economic recession. The TFP index returned to steady state following decreases of 33.7% and 15.2%, respectively, in the two years following the disaster. (4) The significant decrease in the post-disaster recovery efficiency was caused mainly by technological changes, and the renewal of the production system was the leading factor in determining the economic resilience following the disaster. With the decline in the scale of economic recovery following the earthquake, long-term economic recovery in the disaster-stricken areas depended mainly on pure technical efficiency, and the improvement in the latter was the driving force for maintaining the long-term growth of the post-disaster economy. Therefore, according to the local characteristics of natural environment and economic system, the disaster-stricken areas need to actively change and readjust their economic structures. At the same time, attention should be paid to updating the production system to enhance the level of technological progress and give full play to the scale effects of large-scale capital, new facilities, human resources, and other investment factors following the disaster so as to enhance the impact of economic resilience and recovery efficiency in response to the disaster.展开更多
基金supported by the National Natural Science Foundation of China (grants 41630210 and 41474036)
文摘At UTC 2017-11-12 18:18:17,an Mw7.3 earthquake occurred at the border between Iran and Iraq(location 34.886°N,45.941°E,depth 23 km according to USGS).We carried out focal mechanism and rupture process studies with the data from IRIS data center,using 26 far-field P-waveforms and 25 SH-waveforms with high S/N ratio and relatively even azimuth coverage(epicentral distance)in a point source model to invert for the focal mechanism solution;the result(Figure1)was used to construct a finite fault model for rupture process inversion(Yao and Ji,1997;Wang et al.,2008),resulting in a preliminary slip distribution of this earthquake(Figures 2-4).The calculated seismic moment is 1.1×1020 N·m,Mw=7.3.The maximum slip is about 700 cm.
基金supported by Science and Technology Development Fund of Gansu Earthquake Administration of Gansu Province (No. 2012M02)National Natural Science Foundation of China (No. 41274093)
文摘The D'' layer,which is located atop the core–mantle boundary,has long been an area of focus for global seismology studies. A widely used approach to study the discontinuities in the D'' layer involves the use of the SdS phases between the S and ScS phases,which requires that certain stringent conditions be satisfied with respect to an epicentral distance and earthquake depth. Therefore,this approach is only practical for investigating the presence and topography of velocity interfaces in certain local regions around the world. The Russia–Kazakhstan border region has been a ‘‘blind spot'' with respect to this detection method. The seismic network deployed in the northeastern margin of the Tibetan Plateau has recorded relatively clear SdS phases for the MS6.3 earthquake that occurred in Spain on April 11,2010,allowing this blind spot to be studied. This paper compares the observed waveforms and synthetics and uses the travel times of the relevant phases to obtain a D'' discontinuity depth between2,610 and 2,740 km in the examined area. This study provides the first results regarding the depth of the D'' layer discontinuity for this region and represents an important addition to the global studies of the D'' layer.
基金sponsored by the National Natural Science Foundation Guangdong Union Foundation(U1901602)。
文摘On October 12th,2019,a MS5.2 earthquake occurred in Beiliu City,Guangxi Zhuang Autonomous Region,China,with a focal depth of 10 km. The epicenter is located in the junction of Guangxi and Guangdong where the moderate-strong earthquakes are relatively active. The highest intensity of this earthquake is estimated up to Ⅵ besides the isoseismic line showed an ellipse shape with a long axis trend in the NW direction.The aftershocks are not evenly distributed. The parameters of the focal mechanism solutions are: strike 346°,dip 85°,rake 19° for the nodal planeⅠ,and strike 254°,dip 71°,rake 175° for the nodal planeⅡ. The type of the coseismic fault is strikeslip. After analyzing these results above and the active faults near the epicenter,we get that the nodal planeⅠ is interpreted as the coseismic rupture plane and the BamaBobai Fault is a seismogenic structure of MS5.2 Beiliu earthquake.
基金Second Tibetan Plateau Scientific Expedition and Research Program(STEP),No.2019QZKK0406National Natural Science Foundation of China,No.41807510,No.41501139。
文摘The border areas of the Tibetan Plateau and the neighboring mountainous areas have a high incidence of earthquakes with a magnitude greater than M<sub>s</sub> 5.0, as well as having a dense distribution of geological disasters such as collapses, landslides, and debris flows. Revealing the post-disaster economic development and recovery process is very important for enhancing disaster prevention and response capacity in order to formulate control policies and recovery methods for post-disaster economic reconstruction based on economic resilience. Using long-term socioeconomic data and the autoregressive integrated moving average (ARIMA) model, this paper calculated the economic resilience index of the areas most severely affected by the Wenchuan Earthquake of 2008 and adopted the improved variable returns to scale (VRS) date envelopment analysis (DEA) model and the Malmquist productivity index to analyze the efficiency and effect of annual post-disaster recovery. The results show that: (1) the economic resilience index of the areas most severely affected by the Wenchuan Earthquake was 0.877. The earthquake resulted in a short-term economic recession in the affected areas, but the economy returned to pre-quake levels within two years. In addition, the industrial economy was less resilient than agriculture and the service industry. (2) The comprehensive economic recovery efficiency of the disaster-stricken area in the year following the disaster was 0.603. The comprehensive efficiency, the pure technical efficiency, and the scale efficiency of the plain and hilly areas were significantly greater than those of the plateau and mountain areas. (3) The annual fluctuation in total factor productivity (TFP) following the disaster was considerable, and the economic recovery efficiency decreased significantly, resulting in a short-term economic recession. The TFP index returned to steady state following decreases of 33.7% and 15.2%, respectively, in the two years following the disaster. (4) The significant decrease in the post-disaster recovery efficiency was caused mainly by technological changes, and the renewal of the production system was the leading factor in determining the economic resilience following the disaster. With the decline in the scale of economic recovery following the earthquake, long-term economic recovery in the disaster-stricken areas depended mainly on pure technical efficiency, and the improvement in the latter was the driving force for maintaining the long-term growth of the post-disaster economy. Therefore, according to the local characteristics of natural environment and economic system, the disaster-stricken areas need to actively change and readjust their economic structures. At the same time, attention should be paid to updating the production system to enhance the level of technological progress and give full play to the scale effects of large-scale capital, new facilities, human resources, and other investment factors following the disaster so as to enhance the impact of economic resilience and recovery efficiency in response to the disaster.