Thalamic hemorrhage can lead to the development of central post-stroke pain.Changes in histone acetylation levels,which are regulated by histone deacetylases,affect the excitability of neurons surrounding the hemorrha...Thalamic hemorrhage can lead to the development of central post-stroke pain.Changes in histone acetylation levels,which are regulated by histone deacetylases,affect the excitability of neurons surrounding the hemorrhagic area.However,the regulato ry mechanism of histone deacetylases in central post-stroke pain remains unclea r.Here,we show that iron overload leads to an increase in histone deacetylase 2expression in damaged ventral posterolateral nucleus neurons.Inhibiting this increase restored histone H3 acetylation in the Kcna2 promoter region of the voltage-dependent potassium(Kv)channel subunit gene in a rat model of central post-stroke pain,thereby increasing Kcna2expression and relieving central pain.However,in the absence of nerve injury,increasing histone deacetylase 2 expression decreased Kcna2expression,decreased Kv current,increased the excitability of neurons in the ventral posterolateral nucleus area,and led to neuropathic pain symptoms.Moreover,treatment with the iron chelator deferiprone effectively reduced iron overload in the ventral posterolateral nucleus after intracerebral hemorrhage,reversed histone deacetylase 2 upregulation and Kv1.2 downregulation,and alleviated mechanical hypersensitivity in central post-stroke pain rats.These results suggest that histone deacetylase 2 upregulation and Kv1.2 downregulation,mediated by iron overload,are important factors in central post-stroke pain pathogenesis and co uld se rve as new to rgets for central poststroke pain treatment.展开更多
As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates hav...As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.展开更多
It has previously been demonstrated that phenanthroline-based ligands used to make gold metallotherapuetics have the ability to exhibit cytotoxicity when not coordinated to the metal center. In an effort to help asses...It has previously been demonstrated that phenanthroline-based ligands used to make gold metallotherapuetics have the ability to exhibit cytotoxicity when not coordinated to the metal center. In an effort to help assess the mechanism by which these ligands may cause tumor cell death, iron binding and removal experiments have been considered. The close linkage between cell proliferation and intracellular iron concentrations suggest that iron deprivation strategies may be a mechanism involved in inhibiting tumor cell growth. With the creation of iron (III) phen complexes, the iron binding abilities of three polypyridal ligands [1,10-phenanthroline (phen), 2,9-dimethyl-1, 10-phenanthroline (methylphen), and 2,9-di-sec-butyl-1, 10-phenanthroline (sec-butylphen)] can be tested via a competition reaction with a known iron chelator. Therefore, iron (III) complexes possessing all three ligands were synthesized. Initial mass spectrometric and infrared absorption data indicate that iron (III) tetrachloride complex ions with protonated phen ligands (RphenH+) were formed: [phenH][FeCl4], [methylphenH][FeCl4], [sec-butylphenH][FeCl4]. UV-vis spectroscopy was used to monitor the stability of the complex ions, and it was found that the sec-butylpheniron complex was more stable than the phen and methylphen analogues. This was based on the observation that free ligand was observed immediately upon the addition of EDTA to the [phenH][FeCl4] and [methylphenH] [FeCl4] complex ions.展开更多
Hydrotalcite-type anionic clays are a group of important materials used in adsorption processes, mainly for organic pollutants removal due the layered double hydroxide structure. The layer-interlayer interactions prov...Hydrotalcite-type anionic clays are a group of important materials used in adsorption processes, mainly for organic pollutants removal due the layered double hydroxide structure. The layer-interlayer interactions provide a structural memory even after dehydration and dehydroxylation process, since a very stable interlayer anions are part of material composition, like the carbonate one. A limited numbers of trivalent modifier cations can replace the aluminium cation due the ionic radii mismatch or oxidation state restrictions. Transition metal cations can replace the aluminium one in octahedral site of hydroxide lamellas in order to improve the adsorptive behaviors. In this work, we have investigate three compositions of carbonated magnesium-aluminium hydrotalcite with dif-ferent iron (III) contents through the co-precipitation method at pH 11 and aging step at 60°C for 6 hours. Thermal analysis was performed aiming the determination of the hydration water and hydroxyl amounts in dried precipitate samples, taking in account the results obtained for X-ray diffractometry, infrared spectroscopy, and nitrogen adsorption-desorption characterization for several thermally treated samples. All of synthesized samples showed high surface areas, even for high temperature of thermal treatment. The co-substitution with iron (III) reduced the temperature of dehydration and dehydroxylation process, but the co-substitution at 5 mol% provides other desirables characteristics, like a more amount of rhombohedral HDL phase and higher porosity, even after the thermal treatment at 500°C for 4 hours. This result makes that composition very applicable as a reusable adsorbent material in order to removal several types of micro-pollutant compounds in aqueous media.展开更多
A comparative thermal decomposition kinetic investigation on Fe(III) complexes of a antipyrine Schiff base ligand, 1,2-Bis(imino-4’-antipyrinyl)ethane (GA)), with varying counter anions viz. CIO4-, NO3-, SCN-, Cl-, a...A comparative thermal decomposition kinetic investigation on Fe(III) complexes of a antipyrine Schiff base ligand, 1,2-Bis(imino-4’-antipyrinyl)ethane (GA)), with varying counter anions viz. CIO4-, NO3-, SCN-, Cl-, and Br-, has been done by thermogravimetric analysis by using Coats-Redfern equation. The kinetic parameters like activation energy (E), pre-exponential factor (A) and entropy of activation (ΔS) were quantified. On comparing the various kinetic parameters, lower activation energy was observed in second stage as compared to first thermal decomposition stage. The same trend has been observed for pre-exponential factor (A) and entropy of activation (ΔS). The present results show that the starting materials having higher activation energy (E), are more stable than the intermediate products, however;the intermediate products possess well-ordered chemical structure due to their highly negative entropy of activation (ΔS) values. The present investigation proves that the counter anions play an important role on the thermal decomposition kinetics of the complexes.展开更多
We have developed an iron(III) phthalocyanine chloride‐catalyzed oxidation–aromatization ofα,β‐unsaturated ketones with hydrazine hydrate. Various 3,5‐disubstituted 1H‐pyrazoles were obtained in good to excel...We have developed an iron(III) phthalocyanine chloride‐catalyzed oxidation–aromatization ofα,β‐unsaturated ketones with hydrazine hydrate. Various 3,5‐disubstituted 1H‐pyrazoles were obtained in good to excellent yields. This method offers several advantages, including room‐tem‐perature conditions, short reaction time, high yields, simple work‐up procedure, and use of air as an oxidant. The catalyst can be recovered and reused five times without loss of activity.展开更多
Processing conditions of effectively separating indium from the leaching solution of a smelting antimony slag were studied. For the leaching solution containing indium and antimony and iron ions, indium was separated ...Processing conditions of effectively separating indium from the leaching solution of a smelting antimony slag were studied. For the leaching solution containing indium and antimony and iron ions, indium was separated by extracting with HDEHP kerosine solution, washing antimony and iron ions with oxalic acid solution and stripping indium with a dilute solution of hydrochloric acid. InCl 3 solution with purity above 90% is obtained. Indium can be enriched through a circulation of stripping with a dilute HCl solution. The concentration of InCl 3 solution is about 25~30 g/L.展开更多
The low efficiency of oxygen evolution reaction(OER) is regarded as one of the major roadblocks for metal-air batteries and water electrolysis.Herein,a high-performance OER catalyst of NiFe_(0.2)(oxy)hydroxide(NiFe_(0...The low efficiency of oxygen evolution reaction(OER) is regarded as one of the major roadblocks for metal-air batteries and water electrolysis.Herein,a high-performance OER catalyst of NiFe_(0.2)(oxy)hydroxide(NiFe_(0.2)-O_(x)H_(y)) was developed through topotactic transformation of a Prussian blue analogue in an alkaline solution,which exhibits a low overpotential of only 263 mV to reach a current density of 10 mA cm^(-2) and a small Tafel slope of 35 mV dec-1.Ex-situ/operando Raman spectroscopy results indicated that the phase structure of NiFe_(0.2)-O_(x)H_(y) was irreversibly transformed from the type of α-Ni(OH)_(2) to γ-NiOOH with applying an anodic potential,while ex-situ/operando 57Fe Mossbauer spectroscopic studies evidenced the in-situ production of abundant high-valent iron species under OER conditions,which effectively promoted the OER catalysis.Our work elucidates that the amount of high-valent iron species in-situ produced in the NiFe(oxy)hydroxide has a positive correlation with its water oxidation reaction performance,which further deepens the understanding of the mechanism of NiFe-based electrocatalysts.展开更多
This study investigates the sorption of arsenate from water using zero-valent iron ZVI as sorbent. Batch experiments were carried out to study the sorption kinetics of arsenate under different concentrations of arsena...This study investigates the sorption of arsenate from water using zero-valent iron ZVI as sorbent. Batch experiments were carried out to study the sorption kinetics of arsenate under different concentrations of arsenate varies from 0.5 to 200 mg/l. A kinetic model was considered to describe the arsenates sorption on ZVI material. The kinetics of the arsenate sorption processes were described by the Langmuir kinetic model. The sorption capacity increases with high initial concentration which obtained the maximum sorption 2.1 mg/g at 200 mg/l of arsenate initial concentration. The results show that the rapid initial sorption rates of arsenate were occurred at the beginning of experiments running time, followed by a slower removal that gradually approaches an equilibrium condition. The data from laboratory batch experiments were used to verify the simulation results of the kinetic model resulting in good agreement between measured and modeled results. The results indicate that ZVI could be employed as sorbent materials to enhance the sorption processes and increase the removal rate of arsenate from water.展开更多
The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affect...The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affects the dissolution of vanadium through the catalytic effect on Fe^3+/Fe^2+couple and material exchange.The passivation of iron settling correlates with ferrous ion content in bio-leaching solution.In medium containing A.ferrooxidans and Fe(Ⅲ),the increment in Fe(Ⅱ)concentration leads to the formation of jarosite,generating a decline in vanadium extraction efficiency.Analysis of cyclic voltammetry shows that Fe(Ⅱ)ion is apt to be oxidized and translated into precipitate by A.ferrooxidans,which strongly adsorbed to the surface of the residue.Fe(Ⅲ)ion promotes the vanadium extraction due to its oxidizing activity.Admixing A.ferrooxidans to Fe(Ⅲ)medium elevates the reduction of low valence state vanadium and facilitates the exchange of substance between minerals and solution.This motivates 3.8%and 21.8%increments in recovery ratio and leaching rate of vanadium compared to the Fe(Ⅲ)exclusive use,respectively.Moreover,Fe(Ⅱ)ion impacts vanadium extraction slightly in sterile medium but negatively influences vanadium leaching in the presence of bacteria.展开更多
As a consequence of mining, heavy metal ions can be exposed to the environment hence contaminate ground water and surface water amongst others. The natural polymer chitosan was proved to be an excellent adsorber mater...As a consequence of mining, heavy metal ions can be exposed to the environment hence contaminate ground water and surface water amongst others. The natural polymer chitosan was proved to be an excellent adsorber material for the effective removal of iron and sulfate ions in batch as well as in column experiments. The adsorption behavior of iron ions, as well as sulfate ions was investigated by utilizing chitosan flakes as a natural adsorbent. The removal was studied using adsorbance measurements, SEM and SEM-EDX. The adsorption capacity of chitosan was determined at different times. The received adsorption capacities for iron ions were very promising with a maximum adsorption capacity of 85 mg/g and a rate of separation of 100%. The maximum adsorption capacity obtained for sulfate ions was 188.8 mg/g and a rate of 80%.展开更多
A spectral method to investigate the effect of Fe3+, Fe2+ on the thermostability ofphycocyanin (PC) of Spirulina maxima showed that iron ions prevent decrease of visible light absorbanceand fluorescence intensity of P...A spectral method to investigate the effect of Fe3+, Fe2+ on the thermostability ofphycocyanin (PC) of Spirulina maxima showed that iron ions prevent decrease of visible light absorbanceand fluorescence intensity of PC. Increase in denaturation temperature caused by Fe3+ was observed bythe micro - differential scanning calorimetric method. All results showed iron ions maintain the aggrega-tion stability of the PC. The absorption spectrum of phycocyanobilin (PCB, a prosthetic group of PC) withFe3+ in chloroform was quite different from that of free PCB.展开更多
The tinting phenomena of iron oxide contained glasses were studied from aspects of the electronic configuration, the iron ions coordination fields and the ions structure in glass. Several iron ion tinting forms at dif...The tinting phenomena of iron oxide contained glasses were studied from aspects of the electronic configuration, the iron ions coordination fields and the ions structure in glass. Several iron ion tinting forms at different redox or COD (chemical oxygen demand) conditions and their influential factors were given necessary explanations. The results reveal that the Fe^(3+)-O-Fe^(2+) structure is the real tinting reason of iron involved glasses, whereas the Si^(4+)-O-Fe^(3+) and Si^(4+)-O-Fe^(2+) formulations modify the glass colours. Under oxidizing melting condition, the amount of 4/6-coordinated Fe^(3+) increases and makes the glass colour yellowish. Conversely, reducing melting condition makes the 6-coordinated Fe^(2+) increased and gives much blue tint to the glass. The conventional tank furnace melting the very strong reducing condition, which is of high COD glass batch, is not suitable. The high ratio of ferrous/ferric in glass can be obtained with a new refining technology which contains no or little amount of refining agent.展开更多
Under far from equilibrium conditions, the formation mechanism of solid can be studied in terms of the dynamic scaling theory. The roughness and dynamic scaling behavior of the Fe-N thin films were studied by atomic f...Under far from equilibrium conditions, the formation mechanism of solid can be studied in terms of the dynamic scaling theory. The roughness and dynamic scaling behavior of the Fe-N thin films were studied by atomic force microscopy and grazing incidence X-ray scattering. The results indicate that the roughness of the surface increases with increasing sputtering time during the course of magnetron sputtering, and the surface exhibits a fractal characteristic. While the Fe-N films prepared by compound technology—combining magnetron sputtering with plasma based ion implantation are not in agreement with the fractal theory.展开更多
Coupled with a petrographical study, I carried out an ion probe study of rare earth element microdistributions in mineral phases of silicate inclusions from the Colomera ⅡE iron meteorite. Most mineral grains have ho...Coupled with a petrographical study, I carried out an ion probe study of rare earth element microdistributions in mineral phases of silicate inclusions from the Colomera ⅡE iron meteorite. Most mineral grains have homogeneous REEs, but show considerable inter-grain variations by a factor of 2 to 100. The whole rock REE abundances for Colomera, estimated by combining REE data with modal abundances, are relatively LREE-enriched with REEs of -10'CI, which suggest that Colomera silicates were highly differentiated and might represent a low degree partial melt (-10%) of a chondritic source. REE geochemistry of Colomera silicate inclusions points to an origin that involves differentiation, dynamic mixing, remelting, reduction, recrystallization, and subsequent rapid cooling near the surface of a planetary body.展开更多
A facile and rapid approach for detecting low concentration of iron ion(Fe3+) with improved sensitivity was developed on the basis of plasmon enhanced fluorescence and subsequently amplified fluorescence quenching.Au1...A facile and rapid approach for detecting low concentration of iron ion(Fe3+) with improved sensitivity was developed on the basis of plasmon enhanced fluorescence and subsequently amplified fluorescence quenching.Au1Ag4@Si O2 nanoparticles were synthesized and dispersed into fluorescein isothiocyanate(FITC) solution. The fluorescence of the FITC solution was improved due to plasmon enhanced fluorescence. However, efficient fluorescence quenching of the FITC/Au1Ag4@Si O2 solution was subsequently achieved when Fe3+, with a concentration ranging from17 n M to 3.4 l M, was added into the FITC/Au1Ag4@Si O2 solution, whereas almost no fluorescence quenching was observed for pure FITC solution under the same condition. FITC/Au1Ag4@Si O2 solution shows a better sensitivity for detecting low concentration of Fe3+compared to pure FITC solution. The quantized limit of detection toward Fe3+was improved from 4.6 l M for pure FITC solution to 20 n M for FITC/Au1Ag4@Si O2 solution.展开更多
In this article, we study modified nano-hydroxyapatite (HAp) by nano manganese oxide (Mn3O4) as adsorbent material to remove iron ions from groundwater. Different parameters were studied to option optimum conditions o...In this article, we study modified nano-hydroxyapatite (HAp) by nano manganese oxide (Mn3O4) as adsorbent material to remove iron ions from groundwater. Different parameters were studied to option optimum conditions of removing such as contact time, pH, initial concentration, a dosage of adsorbent, agitation speed and temperature. Kinetics studies included first order (R2 = 0.915), pseudo-first order (R2 = 0.936), second order (R2 = 0.948), pseudo-second order (R2 = 0.995), Elovich equation model (R2 = 0.977), intraparticle diffusion (R2 = 0.946), Natarajan and Khalaf (R2 = 0.915) were carried out, the obtained results revealed that the pseudo-second order is the best to describe the adsorption process because the correlation coefficient is approaching one (R2 = 0.995). Adsorption isotherm was calculated by using Freundlich, Langmuir and Temkin constants, adsorption capacity from Langmuir model was 0.606 mg/g. Thermodynamic parameters (ΔG, ΔH = ?51 KJ/mol, and ΔS = ?142 (KJ/mol)) for the adsorption process were also calculated and discussed.展开更多
Differences in the barley varieties have been revealed from tolerance to iron (Fe) and aluminum (Al) ions as well as to their combined effect. Received results allowed to separate barley variety into some (three) grou...Differences in the barley varieties have been revealed from tolerance to iron (Fe) and aluminum (Al) ions as well as to their combined effect. Received results allowed to separate barley variety into some (three) groups: the first—Al-tolerant varieties, the second—Al-sensitive ones and third—moderately resistant variety. The increased concentration of Fe had practically no effect on biometric (seed germination energy) and cytogenetics (frequency of chromosome aberrations and mitotic index) parameters as compared to the reference values. At the same time, iron ion significantly reduces the phytotoxic effect for Al-tolerant varieties in case of these elements jointly presented in solution.展开更多
基金supported by the National Natural Science Foundation of China,Nos.U2004106 (to WY),81971061 (to JC)the Key Scientific Research Project of Colleges and Universities in Henan Province,No.21A320039 (to WY)。
文摘Thalamic hemorrhage can lead to the development of central post-stroke pain.Changes in histone acetylation levels,which are regulated by histone deacetylases,affect the excitability of neurons surrounding the hemorrhagic area.However,the regulato ry mechanism of histone deacetylases in central post-stroke pain remains unclea r.Here,we show that iron overload leads to an increase in histone deacetylase 2expression in damaged ventral posterolateral nucleus neurons.Inhibiting this increase restored histone H3 acetylation in the Kcna2 promoter region of the voltage-dependent potassium(Kv)channel subunit gene in a rat model of central post-stroke pain,thereby increasing Kcna2expression and relieving central pain.However,in the absence of nerve injury,increasing histone deacetylase 2 expression decreased Kcna2expression,decreased Kv current,increased the excitability of neurons in the ventral posterolateral nucleus area,and led to neuropathic pain symptoms.Moreover,treatment with the iron chelator deferiprone effectively reduced iron overload in the ventral posterolateral nucleus after intracerebral hemorrhage,reversed histone deacetylase 2 upregulation and Kv1.2 downregulation,and alleviated mechanical hypersensitivity in central post-stroke pain rats.These results suggest that histone deacetylase 2 upregulation and Kv1.2 downregulation,mediated by iron overload,are important factors in central post-stroke pain pathogenesis and co uld se rve as new to rgets for central poststroke pain treatment.
基金financial support from the National Key Research and Development Program of China(2020YFA0710202)the National Natural Science Foundation of China(21978043,U1662130)+1 种基金Inner Mongolia University of Technology Scientific Research Initial Funding(DC2300001240)Talent Introduction Support Project of Inner Mongolia(DC2300001426).
文摘As a common precursor for supercritical CO_(2)(scCO_(2))deposition techniques,solubility data of organometallic complexes in scCO_(2)is crucial for the preparation of nanocomposites.Recently,metal acetylacetonates have shown great potential for the preparation of single-atom catalytic materials.In this study,the solubilities of iron(Ⅲ)acetylacetonate(Fe(acac)3)and nickel(Ⅱ)acetylacetonate(Ni(acac)2)were measured at the temperature from 313.15 to 333.15 K and in the pressure range of 9.5–25.2 MPa to accumulate new solubility data.Solubility was measured using a static weight loss method.The semi-empirical models proposed by Chrastil and Sung et al.were used to correlate the solubility data of Fe(acac)3 and Ni(acac)2.The equations obtained can be used to predict the solubility of the same system in the experimental range.
文摘It has previously been demonstrated that phenanthroline-based ligands used to make gold metallotherapuetics have the ability to exhibit cytotoxicity when not coordinated to the metal center. In an effort to help assess the mechanism by which these ligands may cause tumor cell death, iron binding and removal experiments have been considered. The close linkage between cell proliferation and intracellular iron concentrations suggest that iron deprivation strategies may be a mechanism involved in inhibiting tumor cell growth. With the creation of iron (III) phen complexes, the iron binding abilities of three polypyridal ligands [1,10-phenanthroline (phen), 2,9-dimethyl-1, 10-phenanthroline (methylphen), and 2,9-di-sec-butyl-1, 10-phenanthroline (sec-butylphen)] can be tested via a competition reaction with a known iron chelator. Therefore, iron (III) complexes possessing all three ligands were synthesized. Initial mass spectrometric and infrared absorption data indicate that iron (III) tetrachloride complex ions with protonated phen ligands (RphenH+) were formed: [phenH][FeCl4], [methylphenH][FeCl4], [sec-butylphenH][FeCl4]. UV-vis spectroscopy was used to monitor the stability of the complex ions, and it was found that the sec-butylpheniron complex was more stable than the phen and methylphen analogues. This was based on the observation that free ligand was observed immediately upon the addition of EDTA to the [phenH][FeCl4] and [methylphenH] [FeCl4] complex ions.
文摘Hydrotalcite-type anionic clays are a group of important materials used in adsorption processes, mainly for organic pollutants removal due the layered double hydroxide structure. The layer-interlayer interactions provide a structural memory even after dehydration and dehydroxylation process, since a very stable interlayer anions are part of material composition, like the carbonate one. A limited numbers of trivalent modifier cations can replace the aluminium cation due the ionic radii mismatch or oxidation state restrictions. Transition metal cations can replace the aluminium one in octahedral site of hydroxide lamellas in order to improve the adsorptive behaviors. In this work, we have investigate three compositions of carbonated magnesium-aluminium hydrotalcite with dif-ferent iron (III) contents through the co-precipitation method at pH 11 and aging step at 60°C for 6 hours. Thermal analysis was performed aiming the determination of the hydration water and hydroxyl amounts in dried precipitate samples, taking in account the results obtained for X-ray diffractometry, infrared spectroscopy, and nitrogen adsorption-desorption characterization for several thermally treated samples. All of synthesized samples showed high surface areas, even for high temperature of thermal treatment. The co-substitution with iron (III) reduced the temperature of dehydration and dehydroxylation process, but the co-substitution at 5 mol% provides other desirables characteristics, like a more amount of rhombohedral HDL phase and higher porosity, even after the thermal treatment at 500°C for 4 hours. This result makes that composition very applicable as a reusable adsorbent material in order to removal several types of micro-pollutant compounds in aqueous media.
文摘A comparative thermal decomposition kinetic investigation on Fe(III) complexes of a antipyrine Schiff base ligand, 1,2-Bis(imino-4’-antipyrinyl)ethane (GA)), with varying counter anions viz. CIO4-, NO3-, SCN-, Cl-, and Br-, has been done by thermogravimetric analysis by using Coats-Redfern equation. The kinetic parameters like activation energy (E), pre-exponential factor (A) and entropy of activation (ΔS) were quantified. On comparing the various kinetic parameters, lower activation energy was observed in second stage as compared to first thermal decomposition stage. The same trend has been observed for pre-exponential factor (A) and entropy of activation (ΔS). The present results show that the starting materials having higher activation energy (E), are more stable than the intermediate products, however;the intermediate products possess well-ordered chemical structure due to their highly negative entropy of activation (ΔS) values. The present investigation proves that the counter anions play an important role on the thermal decomposition kinetics of the complexes.
基金supported by the Industrial Research Project of Shaanxi Science and Technology Department(2014K08-29)Science and Technology Plan Project of Xi’an(CXY1511(7))Scientific Research Foundation of Northwest University~~
文摘We have developed an iron(III) phthalocyanine chloride‐catalyzed oxidation–aromatization ofα,β‐unsaturated ketones with hydrazine hydrate. Various 3,5‐disubstituted 1H‐pyrazoles were obtained in good to excellent yields. This method offers several advantages, including room‐tem‐perature conditions, short reaction time, high yields, simple work‐up procedure, and use of air as an oxidant. The catalyst can be recovered and reused five times without loss of activity.
文摘Processing conditions of effectively separating indium from the leaching solution of a smelting antimony slag were studied. For the leaching solution containing indium and antimony and iron ions, indium was separated by extracting with HDEHP kerosine solution, washing antimony and iron ions with oxalic acid solution and stripping indium with a dilute solution of hydrochloric acid. InCl 3 solution with purity above 90% is obtained. Indium can be enriched through a circulation of stripping with a dilute HCl solution. The concentration of InCl 3 solution is about 25~30 g/L.
基金financially supported by the National Natural Science Foundation of China(21476232,21961142006)the International Partnership Program of Chinese Academy of Sciences(121421KYSB20170020)the State Key Laboratory of Catalysis in Dalian Institute of Chemical Physics(N-16-07)。
文摘The low efficiency of oxygen evolution reaction(OER) is regarded as one of the major roadblocks for metal-air batteries and water electrolysis.Herein,a high-performance OER catalyst of NiFe_(0.2)(oxy)hydroxide(NiFe_(0.2)-O_(x)H_(y)) was developed through topotactic transformation of a Prussian blue analogue in an alkaline solution,which exhibits a low overpotential of only 263 mV to reach a current density of 10 mA cm^(-2) and a small Tafel slope of 35 mV dec-1.Ex-situ/operando Raman spectroscopy results indicated that the phase structure of NiFe_(0.2)-O_(x)H_(y) was irreversibly transformed from the type of α-Ni(OH)_(2) to γ-NiOOH with applying an anodic potential,while ex-situ/operando 57Fe Mossbauer spectroscopic studies evidenced the in-situ production of abundant high-valent iron species under OER conditions,which effectively promoted the OER catalysis.Our work elucidates that the amount of high-valent iron species in-situ produced in the NiFe(oxy)hydroxide has a positive correlation with its water oxidation reaction performance,which further deepens the understanding of the mechanism of NiFe-based electrocatalysts.
文摘This study investigates the sorption of arsenate from water using zero-valent iron ZVI as sorbent. Batch experiments were carried out to study the sorption kinetics of arsenate under different concentrations of arsenate varies from 0.5 to 200 mg/l. A kinetic model was considered to describe the arsenates sorption on ZVI material. The kinetics of the arsenate sorption processes were described by the Langmuir kinetic model. The sorption capacity increases with high initial concentration which obtained the maximum sorption 2.1 mg/g at 200 mg/l of arsenate initial concentration. The results show that the rapid initial sorption rates of arsenate were occurred at the beginning of experiments running time, followed by a slower removal that gradually approaches an equilibrium condition. The data from laboratory batch experiments were used to verify the simulation results of the kinetic model resulting in good agreement between measured and modeled results. The results indicate that ZVI could be employed as sorbent materials to enhance the sorption processes and increase the removal rate of arsenate from water.
基金Project(DY135-B2-15) supported by the China Ocean Mineral Resource R&D AssociationProject(2015ZX07205-003) supported by Major Science and Technology Program for Water Pollution Control and Treatment,ChinaProjects(21176242,21176026) supported by the National Natural Science Foundation of China
文摘The acid bio-leaching process of vanadium extraction from clay vanadium water-leached residue was studied and the effect of the performance of iron transformation was investigated.Acidithiobacillus ferrooxidans affects the dissolution of vanadium through the catalytic effect on Fe^3+/Fe^2+couple and material exchange.The passivation of iron settling correlates with ferrous ion content in bio-leaching solution.In medium containing A.ferrooxidans and Fe(Ⅲ),the increment in Fe(Ⅱ)concentration leads to the formation of jarosite,generating a decline in vanadium extraction efficiency.Analysis of cyclic voltammetry shows that Fe(Ⅱ)ion is apt to be oxidized and translated into precipitate by A.ferrooxidans,which strongly adsorbed to the surface of the residue.Fe(Ⅲ)ion promotes the vanadium extraction due to its oxidizing activity.Admixing A.ferrooxidans to Fe(Ⅲ)medium elevates the reduction of low valence state vanadium and facilitates the exchange of substance between minerals and solution.This motivates 3.8%and 21.8%increments in recovery ratio and leaching rate of vanadium compared to the Fe(Ⅲ)exclusive use,respectively.Moreover,Fe(Ⅱ)ion impacts vanadium extraction slightly in sterile medium but negatively influences vanadium leaching in the presence of bacteria.
文摘As a consequence of mining, heavy metal ions can be exposed to the environment hence contaminate ground water and surface water amongst others. The natural polymer chitosan was proved to be an excellent adsorber material for the effective removal of iron and sulfate ions in batch as well as in column experiments. The adsorption behavior of iron ions, as well as sulfate ions was investigated by utilizing chitosan flakes as a natural adsorbent. The removal was studied using adsorbance measurements, SEM and SEM-EDX. The adsorption capacity of chitosan was determined at different times. The received adsorption capacities for iron ions were very promising with a maximum adsorption capacity of 85 mg/g and a rate of separation of 100%. The maximum adsorption capacity obtained for sulfate ions was 188.8 mg/g and a rate of 80%.
文摘A spectral method to investigate the effect of Fe3+, Fe2+ on the thermostability ofphycocyanin (PC) of Spirulina maxima showed that iron ions prevent decrease of visible light absorbanceand fluorescence intensity of PC. Increase in denaturation temperature caused by Fe3+ was observed bythe micro - differential scanning calorimetric method. All results showed iron ions maintain the aggrega-tion stability of the PC. The absorption spectrum of phycocyanobilin (PCB, a prosthetic group of PC) withFe3+ in chloroform was quite different from that of free PCB.
文摘The tinting phenomena of iron oxide contained glasses were studied from aspects of the electronic configuration, the iron ions coordination fields and the ions structure in glass. Several iron ion tinting forms at different redox or COD (chemical oxygen demand) conditions and their influential factors were given necessary explanations. The results reveal that the Fe^(3+)-O-Fe^(2+) structure is the real tinting reason of iron involved glasses, whereas the Si^(4+)-O-Fe^(3+) and Si^(4+)-O-Fe^(2+) formulations modify the glass colours. Under oxidizing melting condition, the amount of 4/6-coordinated Fe^(3+) increases and makes the glass colour yellowish. Conversely, reducing melting condition makes the 6-coordinated Fe^(2+) increased and gives much blue tint to the glass. The conventional tank furnace melting the very strong reducing condition, which is of high COD glass batch, is not suitable. The high ratio of ferrous/ferric in glass can be obtained with a new refining technology which contains no or little amount of refining agent.
文摘Under far from equilibrium conditions, the formation mechanism of solid can be studied in terms of the dynamic scaling theory. The roughness and dynamic scaling behavior of the Fe-N thin films were studied by atomic force microscopy and grazing incidence X-ray scattering. The results indicate that the roughness of the surface increases with increasing sputtering time during the course of magnetron sputtering, and the surface exhibits a fractal characteristic. While the Fe-N films prepared by compound technology—combining magnetron sputtering with plasma based ion implantation are not in agreement with the fractal theory.
基金This work was partly supported by National Natural Science Foundation of China(Grant No.40325009)by“One-hundred Talent Program”of the Chinese Academy of Sciences.
文摘Coupled with a petrographical study, I carried out an ion probe study of rare earth element microdistributions in mineral phases of silicate inclusions from the Colomera ⅡE iron meteorite. Most mineral grains have homogeneous REEs, but show considerable inter-grain variations by a factor of 2 to 100. The whole rock REE abundances for Colomera, estimated by combining REE data with modal abundances, are relatively LREE-enriched with REEs of -10'CI, which suggest that Colomera silicates were highly differentiated and might represent a low degree partial melt (-10%) of a chondritic source. REE geochemistry of Colomera silicate inclusions points to an origin that involves differentiation, dynamic mixing, remelting, reduction, recrystallization, and subsequent rapid cooling near the surface of a planetary body.
基金supported by the National Natural Science Foundation of China (51003069)Natural Science Foundation of Jiangsu Higher Education Institutions of China (10KJB430014)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A facile and rapid approach for detecting low concentration of iron ion(Fe3+) with improved sensitivity was developed on the basis of plasmon enhanced fluorescence and subsequently amplified fluorescence quenching.Au1Ag4@Si O2 nanoparticles were synthesized and dispersed into fluorescein isothiocyanate(FITC) solution. The fluorescence of the FITC solution was improved due to plasmon enhanced fluorescence. However, efficient fluorescence quenching of the FITC/Au1Ag4@Si O2 solution was subsequently achieved when Fe3+, with a concentration ranging from17 n M to 3.4 l M, was added into the FITC/Au1Ag4@Si O2 solution, whereas almost no fluorescence quenching was observed for pure FITC solution under the same condition. FITC/Au1Ag4@Si O2 solution shows a better sensitivity for detecting low concentration of Fe3+compared to pure FITC solution. The quantized limit of detection toward Fe3+was improved from 4.6 l M for pure FITC solution to 20 n M for FITC/Au1Ag4@Si O2 solution.
文摘In this article, we study modified nano-hydroxyapatite (HAp) by nano manganese oxide (Mn3O4) as adsorbent material to remove iron ions from groundwater. Different parameters were studied to option optimum conditions of removing such as contact time, pH, initial concentration, a dosage of adsorbent, agitation speed and temperature. Kinetics studies included first order (R2 = 0.915), pseudo-first order (R2 = 0.936), second order (R2 = 0.948), pseudo-second order (R2 = 0.995), Elovich equation model (R2 = 0.977), intraparticle diffusion (R2 = 0.946), Natarajan and Khalaf (R2 = 0.915) were carried out, the obtained results revealed that the pseudo-second order is the best to describe the adsorption process because the correlation coefficient is approaching one (R2 = 0.995). Adsorption isotherm was calculated by using Freundlich, Langmuir and Temkin constants, adsorption capacity from Langmuir model was 0.606 mg/g. Thermodynamic parameters (ΔG, ΔH = ?51 KJ/mol, and ΔS = ?142 (KJ/mol)) for the adsorption process were also calculated and discussed.
文摘Differences in the barley varieties have been revealed from tolerance to iron (Fe) and aluminum (Al) ions as well as to their combined effect. Received results allowed to separate barley variety into some (three) groups: the first—Al-tolerant varieties, the second—Al-sensitive ones and third—moderately resistant variety. The increased concentration of Fe had practically no effect on biometric (seed germination energy) and cytogenetics (frequency of chromosome aberrations and mitotic index) parameters as compared to the reference values. At the same time, iron ion significantly reduces the phytotoxic effect for Al-tolerant varieties in case of these elements jointly presented in solution.