期刊文献+
共找到5,102篇文章
< 1 2 250 >
每页显示 20 50 100
Striking Stabilization Effect of Spinel Cobalt Oxide Oxygen Evolution Electrocatalysts in Neutral pH by Dual-Sites Iron Incorporation
1
作者 Shuairu Zhu Xue Wang +4 位作者 Jiabo Le Na An Jianming Li Deyu Liu Yongbo Kuang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期152-160,共9页
Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels h... Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels have drawn a considerable amount of attention but most of them operate in alkali solutions.However,the frequently studied Co-Fe spinel system never exhibits appreciable stability in nonbasic conditions,not to mention attract further investigation on its key structural motif and transition states for activity loss.Herein,we report exceptional stable Co-Fe spinel oxygen evolution catalysts(~30%Fe is optimal)in a neutral electrolyte,owing to its unique metal ion arrangements in the crystal lattice.The introduced iron content enters both the octahedral and tetrahedral sites of the spinel as Fe^(2+)and Fe^(3+)(with Co ions having mixed distribution as well).Combining density functional theory calculations,we find that the introduction of Fe to Co_(3)O_(4)lowers the covalency of metal-oxygen bonds and can help suppress the oxidation of Co^(2+/3+)and 0^(2-).It implies that the Co-Fe spinel will have minor surface reconstruction and less lattice oxygen loss during the oxygen evolution reaction process in comparison with Co_(3)O_(4)and hence show much better stability.These findings suggest that there is still much chance for the spinel structures,especially using reasonable sublattices engineering via multimetal doping to develop advanced oxygen evolution catalysts. 展开更多
关键词 dual-sites iron electrocatalyst stability neutral electrolyte oxygen evolution reaction spinel oxides
下载PDF
Carbon Monoxide Modulates Auxin Transport and Nitric Oxide Signaling in Plants under Iron Deficiency Stress
2
作者 Kaiyue Hong Yasmina Radani +2 位作者 Waqas Ahmad Ping Li Yuming Luo 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期45-61,共17页
Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in mo... Carbon monoxide(CO)and nitric oxide(NO)are signal molecules that enhance plant adaptation to environmental stimuli.Auxin is an essential phytohormone for plant growth and development.CO and NO play crucial roles in modulating the plant’s response to iron deficiency.Iron deficiency leads to an increase in the activity of heme oxygenase(HO)and the subsequent generation of CO.Additionally,it alters the polar subcellular distribution of Pin-Formed 1(PIN1)proteins,resulting in enhanced auxin transport.This alteration,in turn,leads to an increase in NO accumulation.Furthermore,iron deficiency enhances the activity of ferric chelate reductase(FCR),as well as the expression of the Fer-like iron deficiency-induced transcription factor 1(FIT)and the ferric reduction oxidase 2(FRO2)genes in plant roots.Overexpression of the long hypocotyl 1(HY1)gene,which encodes heme oxygenase,or the CO donor treatment resulted in enhanced basipetal auxin transport,higher FCR activity,and the expression of FIT and FRO2 genes under Fe deficiency.Here,a potential mechanism is proposed:CO and NO interact with auxin to address iron deficiency stress.CO alters auxin transport,enhancing its accumulation in roots and up-regulating key iron-related genes like FRO2 and IRT1.Elevated auxin levels affect NO signaling,leading to greater sensitivity in root development.This interplay promotes FCR activity,which is crucial for iron absorption.Together,these molecules enhance iron uptake and root growth,revealing a novel aspect of plant physiology in adapting to environmental stress. 展开更多
关键词 Carbon monoxide nitric oxide AUXIN iron deficiency signal molecule PLANTS
下载PDF
A critical review towards the causes of the iron-based catalysts deactivation mechanisms in the selective oxidation of hydrogen sulfide to elemental sulfur from biogas
3
作者 Mostafa Tarek Janaina S.Santos +4 位作者 Victor Márquez Mohammad Fereidooni Mohammad Yazdanpanah Supareak Praserthdam Piyasan Praserthdam 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期388-411,I0010,共25页
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ... Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S. 展开更多
关键词 Selective oxidation of H_(2)S iron-based Catalysts Mechanism of deactivation Sulfur or sulfate deposition Transformation of iron species Sintering SDG 7
下载PDF
Study on Kinetics of Iron Oxide Reduction by Hydrogen 被引量:11
4
作者 HOU Baolin ZHANG Haiying +1 位作者 LI Hongzhong ZHU Qingshan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第1期10-17,共8页
Kinetics parameters of iron oxide reduction by hydrogen were evaluated by the isothermal method in a differential micro-packed bed. Influence of external diffusion, internal diffusion and heat transfer on the intrinsi... Kinetics parameters of iron oxide reduction by hydrogen were evaluated by the isothermal method in a differential micro-packed bed. Influence of external diffusion, internal diffusion and heat transfer on the intrinsic reaction rate was investigated and the conditions free of internal and external diffusion resistance have been determined. In the experiments, in order to correctly evaluate the intrinsic kinetics parameters for reducing Fe203 to Fe3O4, the reaction temperatures were set between 440 ℃ and 490 ℃. However, in order to distinguish the reduction of Fe304 to FeO from that of FeO to Fe, the reaction temperature in the experiment was set to be greater than 570 ℃. Intrinsic kinetics of iron oxide reduction by hydrogen was established and the newly established kinetic models were validated by the experimental data. 展开更多
关键词 isothermal method reduction kinetics iron oxide packed bed hydrogen reduction
下载PDF
Annealing temperature dependent catalytic water oxidation activity of iron oxyhydroxide thin films 被引量:4
5
作者 P.T.Babar B.S.Pawar +5 位作者 A.C.Lokhande M.G.Gang J.S.Jang M.P.Suryawanshi S.M.Pawar Jin Hyeok Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第4期757-761,共5页
Nanostructured iron oxyhydroxide(Fe OOH) thin films have been synthesized using an electrodeposition method on a nickel foam(NF) substrate and effect of air annealing temperature on the catalytic performance is st... Nanostructured iron oxyhydroxide(Fe OOH) thin films have been synthesized using an electrodeposition method on a nickel foam(NF) substrate and effect of air annealing temperature on the catalytic performance is studied. The as-deposited and annealed thin films were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS), field emission scanning electron microscopy(FE-SEM) and linear sweep voltammetry(LSV) to determine their structural, morphological, compositional and electrochemical properties, respectively. The as-deposited nanostructured amorphous Fe OOH thin film is converted into a polycrystalline Fe;O;with hematite crystal structure at a high temperature. The Fe OOH thin film acts as an efficient electrocatalyst for the oxygen evolution reaction(OER) in an alkaline 1 M KOH electrolyte. The film annealed at 200 °C shows high catalytic activity with an onset overpotential of 240 m V with a smaller Tafel slope of 48 m V/dec. Additionally, it needs an overpotential of 290 mV to the drive the current density of 10 m A/cm;and shows good stability in the 1 M KOH electrolyte solution. 展开更多
关键词 iron oxyhydroxide/oxide electrocatalyst Electrodeposition method Water splitting Linear sweep voltammetry (LSV) X-ray photoelectron spectroscopy (XPS)
下载PDF
Efficient degradation of dye pollutants in wastewater via photocatalysis using a magnetic zinc oxide/graphene/iron oxide-based catalyst
6
作者 Piyawan Nuengmatcha Arnannit Kuyyogsuy +3 位作者 Paweena Porrawatkul Rungnapa Pimsen Saksit Chanthai Prawit Nuengmatcha 《Water Science and Engineering》 EI CAS CSCD 2023年第3期243-251,共9页
In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photosta... In this paper, we present a proof-of-concept study of the enhancement of photocatalytic activity via a combined strategy of fabricating a visible-light responsive ternary heterostructure and improving overall photostability by incorporating magnetic zinc oxide/graphene/iron oxide (ZGF). A solvothermal approach was used to synthesize the catalyst. X-ray diffraction (XRD), scanning electron microscopic, energy dispersive X-ray, transmission electron microscopic, vibrating sample magnetometric, and ultraviolet–visible diffuse reflectance spectroscopic techniques were used to characterize the synthesized samples. The obtained optimal Zn(NO_(3))_(2) concentration, temperature, and heating duration were 0.10 mol/L, 600℃, and 1 h, respectively. The XRD pattern revealed the presence of peaks corresponding to zinc oxide, graphene, and iron oxide, indicating that the ZGF catalyst was effectively synthesized. Furthermore, when the developed ZGF was used for methylene blue dye degradation, the optimum irradiation time, dye concentration, catalyst dosage, irradiation intensity, and solution pH were 90 min, 10 mg/L, 0.03 g/L, 100 W, and 8.0, respectively. Therefore, the synthesized ZGF system could be used as a catalyst to degrade dyes in wastewater samples. This hybrid nanocomposite consisting of zinc oxide, graphene, and iron oxide could also be used as an effective photocatalytic degrader for various dye pollutants. 展开更多
关键词 Magnetic zinc oxide/graphene/iron oxide PHOTOCATALYSIS Dye pollutants CATALYST Degradation
下载PDF
A hydrated amorphous iron oxide nanoparticle as active water oxidation catalyst 被引量:2
7
作者 Zheng Chen Qinge Huang +2 位作者 Baokun Huang Fuxiang Zhang Can Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第1期38-42,共5页
Developing efficient water oxidation catalysts(WOCs)with earth‐abundant elements still remains a challenging task for artificial photosynthesis.Iron‐based WOC is a promising candidate because it is economically chea... Developing efficient water oxidation catalysts(WOCs)with earth‐abundant elements still remains a challenging task for artificial photosynthesis.Iron‐based WOC is a promising candidate because it is economically cheap,little toxic and environmentally friendly.In this study,we found that the catalytic water oxidation activity on amorphous iron‐based oxide/hydroxide(FeOx)can be decreased by an order of magnitude after the dehydration process at room temperature.Thermogravimetric analysis,XRD and Raman results indicated that the dehydration process of FeOx at room temperature causes the almost completely loss of water molecule with no bulk structural changes.Based on this finding,we prepared hydrated ultrasmall(ca.2.2 nm)FeOx nanoparticles of amorphous feature,which turns out to be extremely active as WOC with turnover frequency(TOF)up to 9.3 s^-1 in the photocatalytic Ru(bpy)3^2+‐Na2S2O8 system.Our findings suggest that future design of active iron‐based oxides as WOCs requires the consideration of their hydration status. 展开更多
关键词 Artificial photosynthesis Water oxidation iron oxide hydrATION AMORPHOUS
下载PDF
Synergism of Pt nanoparticles and iron oxide support for chemoselective hydrogenation of nitroarenes under mild conditions 被引量:3
8
作者 Pei Jing Tao Gan +7 位作者 Hui Qi Bin Zheng Xuefeng Chu Guiyang Yu Wenfu Yan Yongcun Zou Wenxiang Zhang Gang Liu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第2期214-222,共9页
An efficient and low-cost supported Pt catalyst for hydrogenation of niroarenes was prepared with colloid Pt precursors andα-Fe2O3 as a support.The catalyst with Pt content as low as 0.2 wt%exhibits high activities,c... An efficient and low-cost supported Pt catalyst for hydrogenation of niroarenes was prepared with colloid Pt precursors andα-Fe2O3 as a support.The catalyst with Pt content as low as 0.2 wt%exhibits high activities,chemoselectivities and stability in the hydrogenation of nitrobenzene and a variety of niroarenes.The conversion of nitrobenzene can reach 3170 molconv h^–1 molPt^–1 under mild conditions(30°C,5 bar),which is much higher than that of commercial Pt/C catalyst and many reported catalysts under similar reaction conditions.The spatial separation of the active sites for H2 dissociation and hydrogenation should be responsible for the high chemoselectivity,which decreases the contact possibility between the reducible groups of nitroarenes and Pt nanoparticles.The unique surface properties ofα-Fe2O3 play an important role in the reaction process.It provides active sites for hydrogen spillover and reactant adsorption,and ultimately completes the hydrogenation of the nitro group on the catalyst surface. 展开更多
关键词 Supported Pt catalyst iron oxide Nitroarene hydrogenation CHEMOSELECTIVITY Noble metal catalysis
下载PDF
Synthesis of cation exchange resin-supported iron and magnesium oxides/hydroxides composite for nitrate removal in water 被引量:2
9
作者 Trung Thanh Nguyen Vu Anh Khoa Tran +6 位作者 Le Ba Tran Phuoc Toan Phan Minh Tan Nguyen Long Giang Bach Surapol Padungthon Cong Khiem Ta Nhat Huy Nguyen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期378-384,共7页
In this study,we reported on the concept and practical use of cation exchange resin(CER)for removing anions in water via pretreating the CER with metal salts.The cation exchange resinsupported iron and magnesium oxide... In this study,we reported on the concept and practical use of cation exchange resin(CER)for removing anions in water via pretreating the CER with metal salts.The cation exchange resinsupported iron and magnesium oxides/hydroxides composite(FeMg/CER)was synthesized and introduced as a new and potential adsorbent for selective removal of nitrate ion in the water environment.Characteristics of FeMg/CER were determined by techniques such as Fouriertransform infrared spectroscopy,scanning electron microscopy,and Xray diffraction.The results showed that FeMg/CER material had a high nitrate adsorption capacity of 200 mg NO_(3)^()·g^(1)with a fast equilibrium adsorption time of 30 min at pH 5.In addition,it had good durability of at least 10 times of regeneration,which could be applied to practical water and wastewater treatment. 展开更多
关键词 iron oxide/hydroxide Magnesium oxide/hydroxide Cation exchange resin ADSORPTION Environment NANOMATERIALS
下载PDF
Hydrogen-based direct reduction of iron oxide at 700℃:Heterogeneity at pellet and microstructure scales 被引量:2
10
作者 Yan Ma Isnaldi R.Souza Filho +8 位作者 Xue Zhang Supriya Nandy Pere Barriobero-Vila Guillermo Requena Dirk Vogel Michael Rohwerder Dirk Ponge Hauke Springer Dierk Raabe 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第10期1901-1907,共7页
Steel production causes a third of all industrial CO_(2) emissions due to the use of carbon-based substances as reductants for iron ores,making it a key driver of global warming.Therefore,research efforts aim to repla... Steel production causes a third of all industrial CO_(2) emissions due to the use of carbon-based substances as reductants for iron ores,making it a key driver of global warming.Therefore,research efforts aim to replace these reductants with sustainably produced hydrogen.Hydrogen-based direct reduction(HyDR)is an attractive processing technology,given that direct reduction(DR)furnaces are routinely operated in the steel industry but with CH_(4) or CO as reductants.Hydrogen diffuses considerably faster through shaft-furnace pellet agglomerates than carbon-based reductants.However,the net reduction kinetics in HyDR remains extremely sluggish for high-quantity steel production,and the hydrogen consumption exceeds the stoichiometrically required amount substantially.Thus,the present study focused on the improved understanding of the influence of spatial gradients,morphology,and internal microstructures of ore pellets on reduction efficiency and metallization during HyDR.For this purpose,commercial DR pellets were investigated using synchrotron high-energy X-ray diffraction and electron microscopy in conjunction with electron backscatter diffraction and chemical probing.Revealing the interplay of different phases with internal interfaces,free surfaces,and associated nucleation and growth mechanisms provides a basis for developing tailored ore pellets that are highly suited for a fast and efficient HyDR. 展开更多
关键词 hydrogen-based direct reduction iron oxide MICROSTRUCTURE spatial gradient metallization
下载PDF
An amorphous manganese iron oxide hollow nanocube cathode for aqueous zinc ion batteries
11
作者 Fengyang Jing Chade Lv +6 位作者 Liangliang Xu Yaru Shang Jian Pei Pin Song Yuanheng Wang Gang Chen Chunshuang Yan 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期314-321,I0008,共9页
Aqueous zinc ion batteries(ZIBs) are attracting considerable attentions for practical energy storage because of their low cost and high safety.Nevertheless,the traditional manganese oxide cathode materials suffer from... Aqueous zinc ion batteries(ZIBs) are attracting considerable attentions for practical energy storage because of their low cost and high safety.Nevertheless,the traditional manganese oxide cathode materials suffer from the low intrinsic electronic conductivity,sluggish ions diffusion kinetics,and structural collapse,hindering their large-scale application.Herein,we successfully developed a latent amorphous Mn_(1.8)Fe_(1.2)O_(4) hollow nanocube(a-H-MnFeO) cathode material derived from Prussian blue analogue precursor.The amorphous nature endows the cathode with lower diffusion barrier and narrower band gap compared with crystalline counterpart,resulting in the superior Zn^(2+) ions and electrons transport kinetics.Hollow structure can furnish abundant surface sites and suppress the structural collapse during the repeated charge/discharge processes.By virtue of the multiple advantageous features,the a-H-MnFeO cathode exhibits exceptional electrochemical performance,in terms of high capacity,excellent rate capability,and prolonged cycle life.This strategy will pave the way for the structural design of emerging cathode materials. 展开更多
关键词 Aqueous zinc-ion batteries Manganese iron oxide cathode Amorphous structure Hollow nanostructure lons transport kinetics
下载PDF
Preparation of Sulphur-containing Aromatic Amines by Reduction of the Corresponding Aromatic Nitro Compounds with Hydrazine Hydrate over Iron Oxide Hydroxide Catalyst 被引量:1
12
作者 Qi Xun SHI Rong Wen LU Zhu Xia ZHANG De Feng ZHAO 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第8期1045-1047,共3页
Sulphur-containing aromatic nitro compounds were rapidly reduced to the corresponding amines in high yields by employing hydrazine hydrate as a hydrogen donor in the presence of iron oxide hydroxide catalyst. It was w... Sulphur-containing aromatic nitro compounds were rapidly reduced to the corresponding amines in high yields by employing hydrazine hydrate as a hydrogen donor in the presence of iron oxide hydroxide catalyst. It was worth noting that the catalyst exhibited extremely high activity. The reduction could be completed within 20-50 min and the yields were up to 97-99 %. 展开更多
关键词 iron oxide hydroxide catalyst hydrazine hydrate sulphur-containing aromatic nitro compounds reduction.
下载PDF
Recent Progress in Superparamagnetic Iron Oxide Nanoparticles
13
作者 Qi NIE Jian WEN 《Agricultural Biotechnology》 CAS 2023年第2期121-126,137,共7页
Superparamagnetic iron oxide nanoparticles(SPIONs)have immeasurable potentials in many fields such as nanobiotechnology and biomedical engineering because of their superparamagnetic properties and small particle size.... Superparamagnetic iron oxide nanoparticles(SPIONs)have immeasurable potentials in many fields such as nanobiotechnology and biomedical engineering because of their superparamagnetic properties and small particle size.This review introduces the methods for SPIONs synthesis,including co-precipitation,thermal decomposition,microemulsion and hydrothermal reaction,and surface modification of SPIONs with organometallic and inorganic metals,surface modification for targeted drug delivery,and the use of SPIONs as a contrast agent.In addition,this article also provides an overview of recent progress in SPIONs for the treatment of glioma,lung cancer and breast cancer. 展开更多
关键词 Superparamagnetic iron oxide nanoparticles Tumor therapy SYNTHESIS Surface modification Contrast agent
下载PDF
Micaceous iron oxide prepared from pyrite cinders by hydrothermal method 被引量:1
14
作者 刘昭成 郑雅杰 《Journal of Central South University》 SCIE EI CAS 2011年第1期89-95,共7页
Micaceous iron oxide (MIO) with a hexagonal flaky shape was prepared by hydrothermal method. The ferric hydroxide used as precursor was obtained by an acidic leaching solution of pyrite cinders reacting with ammonia... Micaceous iron oxide (MIO) with a hexagonal flaky shape was prepared by hydrothermal method. The ferric hydroxide used as precursor was obtained by an acidic leaching solution of pyrite cinders reacting with ammonia solution. The optimal experimental conditions for preparing micaceous iron oxide were investigated by orthogonal experiments. Micaceous iron oxide can be successfully prepared when optimal parameters of total iron concentration of 2.0 mol/L, pH value of 8, n(Fe2+)/n(Fe3+) of 0.1, mass of seed crystal of 1 g, reaction temperature of 260 ℃ and reaction time of 30 min are applied. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffractometry (SAEM) were adopted to characterize the hydrothermal products prepared under optimal conditions. The results indicate that highly crystallized α-Fe2O3 hexagonal flakes, about 1.0-1.5 μm in diameter and 0.1 μm in thickness, are prepared. Furthermore, the quality of micaceous iron oxide prepared can meet the required characteristics of micaceous iron oxide pigments for paints (ISO 10601--2007). 展开更多
关键词 micaceous iron oxide hydrothermal method hexagonal flake pyrite cinders ferric hydroxide
下载PDF
复杂染料废水降解过程中生物炭对Aeromonas hydrophila菌的影响
15
作者 张浩 范晓丹 +1 位作者 李腾 王屿森 《天津城建大学学报》 CAS 2024年第2期125-132,共8页
生物降解复杂染料废水过程中细菌活性是有效降解的关键。本研究分离驯化出染料废水降解菌,并对其进行形态学特征和系统发育的分析鉴定,将生物炭及Fe_(2)O_(3)/生物炭(Fe-BC)分别与菌构建复合体系,研究降解过程中生物炭和Fe-BC对菌的影... 生物降解复杂染料废水过程中细菌活性是有效降解的关键。本研究分离驯化出染料废水降解菌,并对其进行形态学特征和系统发育的分析鉴定,将生物炭及Fe_(2)O_(3)/生物炭(Fe-BC)分别与菌构建复合体系,研究降解过程中生物炭和Fe-BC对菌的影响。结果表明,该降解菌为Aeromonashydrophila(嗜水气单胞菌菌属),生物炭-菌和Fe-BC-菌体系中降解脱色率分别提高18%和75%,降解脱色过程符合准一级动力学模型。在Fe-BC-菌体系中,Fe-BC可以促进菌细胞的代谢和细胞间的物质传递,使得参与代谢的N、P、S、Ca、Na及Fe等元素含量增加,并促使细胞产生胞外分泌物。Fe^(2+)参与菌降解复杂有机物的过程,降解产物主要有N-2-(3,4-二羟苯基)-乙基甲胺、2,3-二氢-1,3-二氧-1H-异吲哚-5-羧酸(含C=O)及甲氧基乙酸甲酯(含C—O)。生物炭与Fe-BC可以提高嗜水气单胞菌的生物活性,完成对复杂染料废水的降解脱色. 展开更多
关键词 氧化铁 生物炭 微生物细菌 染料废水 降解
下载PDF
Caveolin‑1 is critical for hepatic iron storage capacity in the development of nonalcoholic fatty liver disease
16
作者 Guang-Hui Deng Chao-Feng Wu +12 位作者 Yun-Jia Li Hao Shi Wei-Chao Zhong Mu-Keng Hong Jun-Jie Li Jia-Min Zhao Chang Liu Meng-Chen Qin Zhi-Yun Zeng Wei-Min Zhang Ken Kin Lam Yung Zhi-Ping Lv Lei Gao 《Military Medical Research》 SCIE CAS CSCD 2024年第2期206-227,共22页
Background:Nonalcoholic fatty liver disease(NAFLD)is associated with disordered lipid and iron metabolism.Our previous study has substantiated the pivotal role of Caveolin-1(Cav-1)in protecting hepatocytes and mediati... Background:Nonalcoholic fatty liver disease(NAFLD)is associated with disordered lipid and iron metabolism.Our previous study has substantiated the pivotal role of Caveolin-1(Cav-1)in protecting hepatocytes and mediating iron metabolism in the liver.This study aimed to explore the specific mechanisms underlying the regulation of iron metabolism by Cav-1 in NAFLD.Methods:Hepatocyte-specific Cav-1 overexpression mice and knockout mice were used in this study.Cav-1-knockdown of RAW264.7 cells and mouse primary hepatocytes were performed to verify the changes in vitro.Moreover,a high-fat diet and palmitic acid plus oleic acid treatment were utilized to construct a NAFLD model in vivo and in vitro,respectively,while a high-iron diet was used to construct an in vivo iron overload model.Besides,iron concentration,the expression of Cav-1 and iron metabolism-related proteins in liver tissue or serum were detected using iron assay kit,Prussian blue staining,Western blotting,immunofluorescence staining,immunohistochemical staining and ELISA.The related indicators of lipid metabolism and oxidative stress were evaluated by the corresponding reagent kit and staining.Results:Significant disorder of lipid and iron metabolism occurred in NAFLD.The expression of Cav-1 was decreased in NAFLD hepatocytes(P<0.05),accompanied by iron metabolism disorder.Cav-1 enhanced the iron storage capacity of hepatocytes by activating the ferritin light chain/ferritin heavy chain pathway in NAFLD,subsequently alleviating the oxidative stress induced by excess ferrous ions in the liver.Further,CD68^(+) CD163^(+) macrophages expressing Cav-1 were found to accelerate iron accumulation in the liver,which was contrary to the effect of Cav-1 in hepatocytes.Positive correlations were also observed between the serum Cav-1 concentration and the serum iron-related protein levels in NAFLD patients and healthy volunteers(P<0.05).Conclusions:These findings confirm that Cav-1 is an essential target protein that regulates iron and lipid metabolic homeostasis.It is a pivotal molecule for predicting and protecting against the development of NAFLD. 展开更多
关键词 CAVEOLIN-1 Nonalcoholic fatty liver disease iron metabolism FERRITIN Oxidative stress
下载PDF
High temperature oxidation of inoculated high Si/SiMo ductile cast irons in air and combustion atmospheres
17
作者 Iuliana Stan Mihai Chisamera +5 位作者 Robert Lascu Codrut Cariga Eduard Stefan Stelian Stan Denisa Anca Iulian Riposan 《China Foundry》 SCIE EI CAS CSCD 2024年第5期555-562,共8页
The present work aims to investigate the effect of heating temperature(400,600 and 800°C)and inoculating elements(Ca,Ca-Ba,Ca-RE)on oxidation behavior of ductile irons containing 5.25%Si and 4.8%Si-2.3%Mo in dry ... The present work aims to investigate the effect of heating temperature(400,600 and 800°C)and inoculating elements(Ca,Ca-Ba,Ca-RE)on oxidation behavior of ductile irons containing 5.25%Si and 4.8%Si-2.3%Mo in dry air and combustion gas containing water vapour(natural gas burning).The oxidation is influenced by the gas atmosphere type,the iron alloying system,and the inoculating elements depending on the heating temperature.The weight gain increases from 0.001%-0.1%(400°C)to 0.05%-0.70%(600°C)and up to 0.10%-2.15%(800°C).No particular effects of the considered influencing factors are found when heating at 400°C,while at 600°C,mainly the oxidation gas atmosphere type shows a visible influence.At the highest heating temperature of 800°C,a limited increase of the weight gain is found for dry air atmosphere(up to 0.25%),but it drastically increases for combustion atmospheres(0.65%-2.15%).The water vapour presence in the combustion atmosphere is an important oxidising factor at 600-800°C.The alloying system appears to influence the oxidation behavior mainly at a heating temperature of 800°C in the combustion atmosphere,as evidenced by the lower weight gain in 5.25%silicon cast iron.Positive effects of inoculating elements increase with the heating temperature,with Ca and Ba-FeSi inoculation generally showing better performance.Irons inoculated with CaRE-FeSi exhibit a higher degree of oxidation.These results are in good relationship with the previous reported data:Ca-Ba-inoculation system appears to be better than simple Ca for improving the graphite parameters,while RE-bearing inoculant negatively affects the compactness degree of graphite particles in high-Si ductile irons.As the lower compactness degree is typical for graphite nodules in high-Si ductile irons,which negatively affects the oxidation resistance,it is necessary to employ specific metallurgical treatments to improve nodule quality.Inoculation,in particular,is a potential method to achieve this improvement. 展开更多
关键词 ductile iron spheroidal graphite Si/SiMo oxidation air/combustion atmospheres FeSiCaMgRE treatment Ca Ca-Ba Ca-RE inoculation structure characteristics
下载PDF
Reduction of Sulphur-containing Aromatic Nitro Compounds with Hydrazine Hydrate over Iron(III) Oxide-MgO Catalyst 被引量:2
18
作者 Qi Xun SHI Rong Wen LU Zhu Xia ZHANG De Feng ZHAO 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第4期441-443,共3页
Sulphur-containing aromatic amines were prepared efficiently in good to excellent yields by reduction of the corresponding sulphur-containing aromatic nitro compounds with hydrazine hydrate in the presence of iron(Ⅲ... Sulphur-containing aromatic amines were prepared efficiently in good to excellent yields by reduction of the corresponding sulphur-containing aromatic nitro compounds with hydrazine hydrate in the presence of iron(Ⅲ) oxide-MgO catalyst. The catalyst exhibited high activity and stability for the reduction of sulphur-containing aromatic nitro compounds. The yields of sulphur-containing aromatic amines were up to 91-99 % at 355 K after reduction for 1-4 h over this catalyst. 展开更多
关键词 iron(Ⅲ) oxide-MgO catalyst hydrazine hydrate sulphur-containing aromatic nitro compounds reduction.
下载PDF
Removing Iron Ions Contaminants from Groundwater Using Modified Nano-Hydroxyapatite by Nano Manganese Oxide
19
作者 Mohammed Abd-El-Aal Ahmed Ayash Tarek Ahmed Seaf Elnasr Madiha Hassan Soliman 《Journal of Water Resource and Protection》 2019年第6期789-809,共21页
In this article, we study modified nano-hydroxyapatite (HAp) by nano manganese oxide (Mn3O4) as adsorbent material to remove iron ions from groundwater. Different parameters were studied to option optimum conditions o... In this article, we study modified nano-hydroxyapatite (HAp) by nano manganese oxide (Mn3O4) as adsorbent material to remove iron ions from groundwater. Different parameters were studied to option optimum conditions of removing such as contact time, pH, initial concentration, a dosage of adsorbent, agitation speed and temperature. Kinetics studies included first order (R2 = 0.915), pseudo-first order (R2 = 0.936), second order (R2 = 0.948), pseudo-second order (R2 = 0.995), Elovich equation model (R2 = 0.977), intraparticle diffusion (R2 = 0.946), Natarajan and Khalaf (R2 = 0.915) were carried out, the obtained results revealed that the pseudo-second order is the best to describe the adsorption process because the correlation coefficient is approaching one (R2 = 0.995). Adsorption isotherm was calculated by using Freundlich, Langmuir and Temkin constants, adsorption capacity from Langmuir model was 0.606 mg/g. Thermodynamic parameters (ΔG, ΔH = ?51 KJ/mol, and ΔS = ?142 (KJ/mol)) for the adsorption process were also calculated and discussed. 展开更多
关键词 GROUNDWATER Adsorption NANO Materials hydrOXYAPATITE Manganese oxide iron Ions Kinetic THERMODYNAMIC
下载PDF
Speciation of adsorbed arsenate on the surface of hydrous iron oxide
20
作者 Yongfeng JIA Xin WANG George Demopoulos 《Chinese Journal Of Geochemistry》 EI CAS 2006年第B08期35-35,共1页
关键词 吸附作用 水银 氧化铁 地球化学循环
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部