The Baotou iron-Steel and Rare Earth Co. is located in Baotou of the AutonomousRegion of Inner Mongolia, where China has her largest mineral reserves of rare earths, par-ticularly that at Baiyunebo. The rare earth res...The Baotou iron-Steel and Rare Earth Co. is located in Baotou of the AutonomousRegion of Inner Mongolia, where China has her largest mineral reserves of rare earths, par-ticularly that at Baiyunebo. The rare earth reserves in this region amount to as high as 80%of that of the whole Nation. The No. 3 Rare Earth Factory was established in 196l and itwas then a pilot plant of the Baotou Steel Works. In 1970 it was reconstructed as a formalplant. Now, it becomes one of the biggest rare earth production bases in China.展开更多
The Baotou Iron and Steel Company(BISCO) is located at Baotou,830 kilometerswest of Beijing,in the Inner MongoliaAutonomous Region.The ore deposit atBaiyun’ebo,on which the company is based,was discovered by geologis...The Baotou Iron and Steel Company(BISCO) is located at Baotou,830 kilometerswest of Beijing,in the Inner MongoliaAutonomous Region.The ore deposit atBaiyun’ebo,on which the company is based,was discovered by geologist DING Daohengin 1927 and was later found to be rich inrare earth elements.An extensive prospecting campaignwas launched after the founding of the展开更多
With the increasing demand for lightweight and lower fuel consumption and safety of automobile industry, lightweight materials of high strength steel (HSS) are more and more widely used. The hot stamping technology, w...With the increasing demand for lightweight and lower fuel consumption and safety of automobile industry, lightweight materials of high strength steel (HSS) are more and more widely used. The hot stamping technology, which is determined by the inherent mechanical properties of high strength steel, makes molds prone to wear failure in the harsh service environments. In this paper, a finite element model is proposed for analyzing the value and distributions law of friction shear stress of contact surface of the pin disk. Through the simulation process of sliding wear, two kinds of different cladding materials of the pin specimens including H13 and Fe65, were experimented under three different loads by using the software ABAQUS. And then the pin-on- disk wear test at elevated temperature was conducted to verify the effectiveness of the simula-tion results. The results showed that the friction shear stress of pin with iron-based cladding and H13 steel was different under different loads, but the distribution was basically the same;the normal friction shear stress increased gradually along the direction of the pin movement, and the tangential shear stress increased gradually from the center of the pin to the outside of the circle;the value of the friction shear stress of the normal joints on the contact surface was periodically fluctuating in the whole dynamic analysis step, while it was basically stable in the tangential direction.展开更多
A technique comprising coal-based direct reduction followed by magnetic separation was presented to recover iron and copper from copper slag flotation tailings.Optimal process parameters,such as reductant and additive...A technique comprising coal-based direct reduction followed by magnetic separation was presented to recover iron and copper from copper slag flotation tailings.Optimal process parameters,such as reductant and additive ratios,reduction temperature,and reduction time,were experimentally determined and found to be as follows:a limestone ratio of 25%,a bitumite ratio of 30%,and reduction roasting at 1473 Kfor 90 min.Under these conditions,copper-bearing iron powders(CIP)with an iron content of 90.11% and copper content of 0.86%,indicating iron and copper recoveries of87.25% and 83.44%respectively,were effectively obtained.Scanning electron microscopy and energy dispersive spectroscopy of the CIP revealed that some tiny copper particles were embedded in metal iron and some copper formed alloy with iron,which was difficult to achieve the separation of these two metals.Thus,the copper went into magnetic products by magnetic separation.Adding copper into the steel can produce weathering steel.Therefore,the CIP can be used as an inexpensive raw material for weathering steel.展开更多
Due to heavy energy consumption and low technical efficiency, China's iron and steel industry is trapped in the dilemma "large but not strong". This situation not only exerts enormous pressure on energy security bu...Due to heavy energy consumption and low technical efficiency, China's iron and steel industry is trapped in the dilemma "large but not strong". This situation not only exerts enormous pressure on energy security but also on increased carbon emission and environmental pollution. The contribution of this study is to calculate the energy and environment efficiency of China's iron and steel industry and to analyze the factors affecting this efficiency. An index of energy and environment efficiency is introduced based on Directional Slacks-based Distance Measure Model. This index is adopted to measure the energy and environment efficiency of China's iron and steel industry using 2,382 firm observations during 2001 to 2005. In addition, Hierarchy Linear Model (HLM) is applied to analyze the factors which can influence the efficiency with both firm-level and province-level data. The conclusions are as follows: The energy and environment efficiency of China's iron and steel industry did not have a significant change during the research period. A firm's age, size, ownership, product category and the economy of its province have significant influence on its energy and environment efficiency.展开更多
文摘The Baotou iron-Steel and Rare Earth Co. is located in Baotou of the AutonomousRegion of Inner Mongolia, where China has her largest mineral reserves of rare earths, par-ticularly that at Baiyunebo. The rare earth reserves in this region amount to as high as 80%of that of the whole Nation. The No. 3 Rare Earth Factory was established in 196l and itwas then a pilot plant of the Baotou Steel Works. In 1970 it was reconstructed as a formalplant. Now, it becomes one of the biggest rare earth production bases in China.
文摘The Baotou Iron and Steel Company(BISCO) is located at Baotou,830 kilometerswest of Beijing,in the Inner MongoliaAutonomous Region.The ore deposit atBaiyun’ebo,on which the company is based,was discovered by geologist DING Daohengin 1927 and was later found to be rich inrare earth elements.An extensive prospecting campaignwas launched after the founding of the
文摘With the increasing demand for lightweight and lower fuel consumption and safety of automobile industry, lightweight materials of high strength steel (HSS) are more and more widely used. The hot stamping technology, which is determined by the inherent mechanical properties of high strength steel, makes molds prone to wear failure in the harsh service environments. In this paper, a finite element model is proposed for analyzing the value and distributions law of friction shear stress of contact surface of the pin disk. Through the simulation process of sliding wear, two kinds of different cladding materials of the pin specimens including H13 and Fe65, were experimented under three different loads by using the software ABAQUS. And then the pin-on- disk wear test at elevated temperature was conducted to verify the effectiveness of the simula-tion results. The results showed that the friction shear stress of pin with iron-based cladding and H13 steel was different under different loads, but the distribution was basically the same;the normal friction shear stress increased gradually along the direction of the pin movement, and the tangential shear stress increased gradually from the center of the pin to the outside of the circle;the value of the friction shear stress of the normal joints on the contact surface was periodically fluctuating in the whole dynamic analysis step, while it was basically stable in the tangential direction.
基金the Natural Science Foundation of China(No.51304012)the State Key Laboratory of High-Efficient Mining and Safety of Metal Mines for the financial support for this research
文摘A technique comprising coal-based direct reduction followed by magnetic separation was presented to recover iron and copper from copper slag flotation tailings.Optimal process parameters,such as reductant and additive ratios,reduction temperature,and reduction time,were experimentally determined and found to be as follows:a limestone ratio of 25%,a bitumite ratio of 30%,and reduction roasting at 1473 Kfor 90 min.Under these conditions,copper-bearing iron powders(CIP)with an iron content of 90.11% and copper content of 0.86%,indicating iron and copper recoveries of87.25% and 83.44%respectively,were effectively obtained.Scanning electron microscopy and energy dispersive spectroscopy of the CIP revealed that some tiny copper particles were embedded in metal iron and some copper formed alloy with iron,which was difficult to achieve the separation of these two metals.Thus,the copper went into magnetic products by magnetic separation.Adding copper into the steel can produce weathering steel.Therefore,the CIP can be used as an inexpensive raw material for weathering steel.
文摘Due to heavy energy consumption and low technical efficiency, China's iron and steel industry is trapped in the dilemma "large but not strong". This situation not only exerts enormous pressure on energy security but also on increased carbon emission and environmental pollution. The contribution of this study is to calculate the energy and environment efficiency of China's iron and steel industry and to analyze the factors affecting this efficiency. An index of energy and environment efficiency is introduced based on Directional Slacks-based Distance Measure Model. This index is adopted to measure the energy and environment efficiency of China's iron and steel industry using 2,382 firm observations during 2001 to 2005. In addition, Hierarchy Linear Model (HLM) is applied to analyze the factors which can influence the efficiency with both firm-level and province-level data. The conclusions are as follows: The energy and environment efficiency of China's iron and steel industry did not have a significant change during the research period. A firm's age, size, ownership, product category and the economy of its province have significant influence on its energy and environment efficiency.