Iron deficiency anemia(IDA)is a major global health problem.Tegillarca granosa has been considered as an excellent source of iron given its high content of iron-binding protein,ferritin.The aim of the present study wa...Iron deficiency anemia(IDA)is a major global health problem.Tegillarca granosa has been considered as an excellent source of iron given its high content of iron-binding protein,ferritin.The aim of the present study was to determine the physicochemical properties,protein structures,and iron uptake of ferritin extracted from T.granosa,and to evaluate the potential impacts of chitosan glycosylation on these characteristics.Based on Box-Behnken design and response surface methodology,the optimal conditions for glycosylation included a ferritin/chitosan mass ratio of 4:1,a pH of 5.5,a reaction time of 10 min,and a reaction temperature of 50℃.Glycosylation caused decreased surface hydrophobicity and elevated water-holding capacity of ferritin due to the introduction of hydrophilic groups.Additionally,glycosylation improved antioxidant capacity of ferritin by 20.69%–189.66%,likely owing to the protons donated by saccharide moiety to terminate free radical chain reaction.The in vitro digestibility of ferritin was elevated by 22.56%–104.85%after glycosylation,which could be associated with lessβ-sheet content in secondary structure that made the glycosylated protein less resistant to enzymatic digestion.The results of the iron bioavailability in Caco-2 cells revealed that ferritin(78.85–231.77 ngmg^(−1))exhibited better iron bioavailability than FeSO4(51.48–114.37 ngmg^(−1))and the values were further elevated by glycosylation with chitosan(296.23–358.20 ngmg^(−1)),which may be related to the physicochemical properties of ferritin via glycosylation modification.These results provide a basis for the development of T.granosa derived ferritin and its glycosylated products,and can promote the utilization of aquatic resources.展开更多
Abstract Objective To compare iron bioavailability (Fe BV) from ten selected kinds of Chinese wheat flours in order to provide scientific basis for further human trials and enable plant breeding programs to screen b...Abstract Objective To compare iron bioavailability (Fe BV) from ten selected kinds of Chinese wheat flours in order to provide scientific basis for further human trials and enable plant breeding programs to screen biofortified wheat cultivars. Methods An in vitro digestion/Caco-2 cell model was used to assess Fe BV of ten flour samples from six leading Chinese wheat cultivars and the stability of Fe BV in one cultivar was studied across three growing environments. Results Significant differences were observed in both Fe BV and Fe bioavailability per gram of food (Fe BVPG) among cultivars (P〈0.01) grown at the same location with the same flour extraction rate. Zhongyou 9507 and Jingdong 8 had Fe BV 37%-54% and Fe BVP(3 103%-154% higher than the reference control. In the Anyang environment, Zhongyou 9507 had a higher wheat flour-Fe level and Fe BVPG. Differences in Fe BV were detected in cultivars with different flour extraction rates. Conclusion Zhongyou 9507 and Jingdong 8 were identified as the most promising cultivars for further evaluation of efficacy by using human subjects. The growing environments had no effect on Fe BV, but did have a significant effect on Fe BVPG. Fe bioavailabilities in low-extraction (40%) flours were higher than those in high-extraction (78%) flours.展开更多
Biofortification of commonly eaten staple food crops with essential mineral micronutrients is a potential sustainable solution to global micronutrient malnutrition. Because phytic acid (PA;1,2,3,4,5,6-hexakis myo-inos...Biofortification of commonly eaten staple food crops with essential mineral micronutrients is a potential sustainable solution to global micronutrient malnutrition. Because phytic acid (PA;1,2,3,4,5,6-hexakis myo-inositol) reduces mineral micronutrient bioavailability, reduction of PA levels could increase the bioavailability of biofortified iron (Fe), zinc (Zn), calcium (Ca), and magnesium (Mg). PA is viewed as an anti-nutrient, yet PA and other inositol phosphates have also demonstrated positive health benefits. Phytic acid analysis in the agricultural, food, and nutritional sciences is typically carried out by colorimetry and chromatographic techniques. In addition, advanced techniques such as nuclear magnetic resonance and synchrotron X-ray absorption spectroscopy have also been used in phytic acid analysis. The colorimetric analysis may overestimate PA levels and synchrotron X-ray absorption techniques may not detect very low levels of inositol phosphates. This short communication discusses the advantages and disadvantages of each widely used phytic acid analysis method, and suggests high performance anion exchange (HPAE) chromatography with conductivity detection (CD) based analysis can achieve greater accuracy for the identification and quantification of inositol phosphates. Accurate characterization and quantification of PA and inositol phosphates will inform PA reduction and biofortification efforts, allowing retention of the benefits of non-phytic inositol phosphates for both plants and humans.展开更多
The aim of this study was to evaluate the effect of iron biofortification on antioxidant response, yield and nutritional qualityof green bean (Phaseolus vulgaris L.) under greenhouse conditions. Fe was applied using t...The aim of this study was to evaluate the effect of iron biofortification on antioxidant response, yield and nutritional qualityof green bean (Phaseolus vulgaris L.) under greenhouse conditions. Fe was applied using two forms (FeSO4 and Fe-EDDHA) at four doses of application (0, 25, 50 and 100 μm) added under a hydroponic system, and were tested over a period of 40 days. The Fe content was assessed in seeds, as well as the activity of antioxidant enzymes, production of H2O2, yield and nutritional quality. The results being obtained indicated that the accumulation of Fe in bean seeds enhanced with the application of Fe-EDDHA at the dose of 25 μm. This demonstrated that low Fe application dose was enough to increase Fe levels in seeds of common bean. In addition, Fe-EDDHA application form at 50 μmol was the best treatment to improve crop yield. Respect to antioxidant system, chelated form of Fe (Fe-EDDHA) was more effective in the activation of antioxidant enzymes (CAT, SOD and GSH-PX), and a lower content of H2O2 in green bean seeds. Finally, to raise the Fe concentration in bean under biofortification program was a promising strategy in cropping systems in order to increase the ingestion of iron and antioxidant capacity in the general population and provided the benefits that this element offered in human health.展开更多
Global efforts to address malnutrition and hidden hunger, particularly prevalent in low- and middle-income countries, have intensified, with a focus on enhancing the nutritional content of staple crops like rice. Desp...Global efforts to address malnutrition and hidden hunger, particularly prevalent in low- and middle-income countries, have intensified, with a focus on enhancing the nutritional content of staple crops like rice. Despite serving as a staple for over half of the world's population, rice falls short in meeting daily nutritional requirements, especially for iron(Fe) and zinc(Zn). Genetic resources, such as wild rice species and specific rice varieties, offer promising avenues for enhancing Fe and Zn content. Additionally, molecular breeding approaches have identified key genes and loci associated with Fe and Zn accumulation in rice grains. This review explores the genetic resources and molecular mechanisms underlying Fe and Zn accumulation in rice grains. The functional genomics involved in Fe uptake, transport, and distribution in rice plants have revealed key genes such as OsFRO1, OsIRT1, and OsNAS3. Similarly, genes associated with Zn uptake and translocation, including OsZIP11 and OsNRAMP1, have been identified. Transgenic approaches, leveraging transporter gene families and genome editing technologies, offer promising avenues for enhancing Fe and Zn content in rice grains. Moreover, strategies for reducing phytic acid(PA) content, a known inhibitor of mineral bioavailability, have been explored, including the identification of low-PA mutants and natural variants. The integration of genomic information, including whole-genome resequencing and pan-genome analyses, provides valuable insights into the genetic basis of micronutrient traits and facilitates targeted breeding efforts. Functional genomics studies have elucidated the molecular mechanisms underlying Fe uptake and translocation in rice. Furthermore, transgenic and genome editing techniques have shown promise in enhancing Fe and Zn content in rice grains through the manipulation of key transporter genes. Overall, the integration of multi-omics approaches holds significant promise for addressing global malnutrition and hidden hunger by enhancing the nutritional quality of rice, thereby contributing to improved food and nutritional security worldwide.展开更多
Vitamin A deficiency (VAD) is the world’s commonest cause of childhood blindness. More than half of these cases occur in developing countries. Animal sourced foods though good sources of vitamin A are too expensive f...Vitamin A deficiency (VAD) is the world’s commonest cause of childhood blindness. More than half of these cases occur in developing countries. Animal sourced foods though good sources of vitamin A are too expensive for poor rural people. Crops biofortified with provitamin A offer a convenient and accessible source of vitamin A. The other micro-nutrient programs of fortification and supplementation require more expensive inputs. Biofortification programs have developed crops that are rich in provitamin A. These crops include: maize, golden rice, cassava and orange fleshed sweetpotato (OFSP). With exception of golden rice, the rest of the biofortified crops have received considerable acceptance among the communities. Both animal and human studies have shown that provitamin A from biofortified crops is highly bioavailable and have capacity to improve vitamin A status. After several years of research and promotion, it is time to fully commercialize provitamin A crops by encouraging farmers to start their large scale production and consumption.展开更多
Deficiencies of essential vitamins,iron(Fe),and zinc(Zn)affect over one-half of the world’s population.A significant progress has been made to control micronutrient deficiencies through supplementation,but new approa...Deficiencies of essential vitamins,iron(Fe),and zinc(Zn)affect over one-half of the world’s population.A significant progress has been made to control micronutrient deficiencies through supplementation,but new approaches are needed,especially to reach the rural poor.Agronomic biofortification of pulses with Zn,Fe,and boron(B)offers a pragmatic solution to combat hidden hunger instead of food fortification and supplementation.Moreover,it also has positive effects on crop production as well.Therefore,we conducted three separate field experiments for two consecutive years to evaluate the impact of soil and foliar application of the aforementioned nutrients on the yield and seed biofortification of mungbean.Soil application of Zn at 0,4.125,8.25,Fe at 0,2.5,5.0 and B at 0,0.55,1.1 kg ha−1 was done in the first,second and third experiment,respectively.Foliar application in these experiments was done at 0.3%Zn,0.2%Fe and 0.1%B respectively one week after flowering initiation.Data revealed that soil-applied Zn,Fe and B at 8.25,5.0 and 1.1 kg ha−1,respectively,enhanced the grain yield of mungbean;however,this increase in yield was statistically similar to that recorded with Zn,Fe and B at 4.125,2.5 and 0.55 kg ha−1,respectively.Foliar application of these nutrients at flower initiation significantly enhanced the Zn contents by 28%and 31%,Fe contents by 80%and 78%,while B contents by 98%and 116%over control during 2019 and 2020,respectively.It was concluded from the results that soil application of Zn,Fe,and B enhanced the yield performance of mungbean;while significant improvements in seed Zn,Fe,and B contents were recorded with foliar application of these nutrients.展开更多
Releases of manganese and iron ions from an albic soil (Albic-Udic Luvisol), a yellow-red soil (Hap-Udic Ferrisol) and a yellow-brown soil (Arp-Udic Luvisol) induced by calcium salt addition and their bioavailability ...Releases of manganese and iron ions from an albic soil (Albic-Udic Luvisol), a yellow-red soil (Hap-Udic Ferrisol) and a yellow-brown soil (Arp-Udic Luvisol) induced by calcium salt addition and their bioavailability to pepper (Capsicum frutescens L.) were studied in a pot experiment. Addition of Ca(NO3)2 decreased soil pH and increased both exchangeable and DTPA (diethylenetriamine pentaacetic acid)-extractable Mn and Fe in soils. Meanwhile, total Mn accumulation in the shoots of Capsicum frutescens L. on the salt-treated soils increased significantly (P < 0.01) compared with the control, suggesting that salt addition to soil induced Mn toxicity in Capsicum frutescens L. Although exchangeable and DTPA-extractable Fe increased also in the salt-treated soils, Fe uptake by the shoots of Capsicum frutescens L. decreased. The effect of added salts in soils on dry matter weight of pepper varied with the soil characteristics, showing different buffer capacities of the soils for salt toxicity in an order of yellow-brown soil > albic soil > yellow-red soil. Fe/Mn ratio in shoots of Capsicum frutescens L. decreased with increasing salt addition for all the soils, which was ascribed to the antagonistic effect of Mn on Fe accumulation. The ratio of Fe/Mn in the tissue was a better indicator of the appearance of Mn toxicity symptoms than Mn concentration alone.展开更多
Redox conditions in paddy soils may vary as they are submerged and drained during rice growth. This change may bring about reductive dissolution of iron (Fe) oxides and subsequent formation of secondary Fe-bearing m...Redox conditions in paddy soils may vary as they are submerged and drained during rice growth. This change may bring about reductive dissolution of iron (Fe) oxides and subsequent formation of secondary Fe-bearing minerals in rice paddies. The mobility and bioavailability of metal contaminants such as cadmium (Cd) in paddy soils are closely related to the chemical behaviors of Fe. Therefore, in this paper, advances in the study of paddy Fe redox transformations and their effects on Cd availability to rice are briefly reviewed. Current concepts presented in this review include the forms of Fe in paddy soils, the reactions involved in Fe oxidation-reduction, chemical factors affecting Fe redox processes, Cd availability to rice and the impacts of Fe transformation on Cd uptake and translocation in rice. Prospects for future research in this area are also discussed.展开更多
Green leafy vegetables (GLVs) are a potential source of iron to combat iron deficiency in iron deficient population. The aim of this study was to determine the bioavailability of iron in seven species of leafy vegetab...Green leafy vegetables (GLVs) are a potential source of iron to combat iron deficiency in iron deficient population. The aim of this study was to determine the bioavailability of iron in seven species of leafy vegetables (Solanumscrabrun, Venonia amygdalina, Cucurbita maxima, Amarathus hybridus, Colococia esculenta, Solanum macrocarpon and Telfairia occidentalis) consumed in Bamenda, Cameroon. A survey was carried out in 70 households in Bamenda, Cameroon to determine methods of preparation of these green leafy vegetables. Iron, antinutrients and vitamin C levels were determined using standard methods and the bioavailability of iron was determined using an in vitro dialys ability method. The vegetables used for the study were cooked with the addition of tomatoes, peanuts, melon seeds and soybean seeds. The loss of iron in GLVs was as a result of dilution caused by addition of the principal ingredients. The V. amygdalina cooked with soybean contained the highest level of iron (128.28 mg/100g). The S. scrabrum cooked with tomatoes had the highest Total phenolic coumponds of 0.91 g/100g;the C. esculenta recorded the highest with values ranging between 0.14 - 0.35 g/100g;the C. maxima cooked with soybean recorded the highest oxalate level (6.46 g/100g);and the vegetables cooked with melon seeds recording the highest in phytatelevels (70 - 1.63 g/100g). Vitamin C levels were highest in the S. macrocarpon cooked with tomatoes (199.96 mg/100g). Iron bioavailability was highest in A. hybridus cooked with tomatoes (28.09%). The iron bioavailability negatively correlated with phytates and positively with vitamin C. GLV consumed in Bamenda are good sources of iron whose bioavailability can be improved by using tomatoes in cooking.展开更多
Phytic acid (PA) is the primary storage compound of phosphorus in seeds accounting for up to 80% of the total seed phosphorus and contributing as much as 1.5% to the seed dry weight. The negatively charged phosphate i...Phytic acid (PA) is the primary storage compound of phosphorus in seeds accounting for up to 80% of the total seed phosphorus and contributing as much as 1.5% to the seed dry weight. The negatively charged phosphate in PA strongly binds to metallic cations of Ca, Fe, K, Mg, Mn and Zn making them insoluble and thus unavailable as nutritional factors. Phytate mainly accumulates in protein storage vacuoles as globoids, predominantly located in the aleurone layer (wheat, barley and rice) or in the embryo (maize). During germination, phytate is hydrolysed by endogenous phytase(s) and other phosphatases to release phosphate, inositol and micronutrients to support the emerging seedling. PA and its derivatives are also implicated in RNA export, DNA repair, signalling, endocytosis and cell vesicular trafficking. Our recent studies on purification of phytate globoids, their mineral composition and dephytinization by wheat phytase will be discussed. Biochemical data for purified and characterized phytases isolated from more than 23 plant species are presented, the dephosphorylation pathways of phytic acid by different classes of phytases are compared, and the application of phytase in food and feed is discussed.展开更多
Iron deficiency is prevalent among endurance athletes, particularly females. Low iron may compromise oxygen delivery and physical performance. Vegetarianism, desire for convenience, and perceived health risks associat...Iron deficiency is prevalent among endurance athletes, particularly females. Low iron may compromise oxygen delivery and physical performance. Vegetarianism, desire for convenience, and perceived health risks associated with red meat contribute to low bioavailable iron intakes. The purpose of this study was to examine if lean beef supplementation would maintain iron status, improve body composition and increase performance of distance runners after 8 weeks. Twenty-eight (14 female) Division-I cross-country runners were stratified by iron status, use of iron supplements, and gender, and randomized into a control (n = 14) and intervention group. All participants maintained their typical diet and consumed a daily multivitamin, while the intervention group consumed 9 ounces of lean beef weekly. Dietary intake (total iron, heme-iron, protein, zinc), body composition, VO2max, and iron status (hemoglobin, hematocrit, serum iron, serum ferritin, total iron binding capacity [TIBC]) were measured at baseline and post-intervention. The intervention group had greater intakes of total and heme-iron. There were no group differences in amino acids, protein, or calories. Both groups had a significant body fat increase and lean mass decease over time. There was a significant VO2max increase over time in both groups. There were no group differences due to the intervention in serum ferritin, hemoglobin, serum iron, and TIBC. There was a significant difference in hematocrit between groups as a result of the intervention. In conclusion, increasing bioavailable iron from red meat may have effects on body composition and maintenance of blood iron markers;however, its direct impact on performance among endurance athletes is unclear.展开更多
Iron (Fe) is a vital element for the survival and proliferation of all plants;therefore, Fe-biofortification by the application of chemical and organic fertilizers is being as an effective approach to fight hidden hun...Iron (Fe) is a vital element for the survival and proliferation of all plants;therefore, Fe-biofortification by the application of chemical and organic fertilizers is being as an effective approach to fight hidden hunger retards the growth and development of crop plants. Two experiments were carried out to investigate the effect of potassium and exogenous organic acids on iron uptake by two different plants<span>:</span><span> one is monocotyledon</span><span>,</span><span><span> maize (<i></i></span><i><i><span>Zea mays</span></i><span></span></i> L.) and the second is dicotolydon pea (<i></i></span><i><i><span>Pisum sativum</span></i></i><span> L.) grown under controlled conditions. The seedlings were grown in sand culture in a greenhouse experiment and irrigated with one-tenth strength modified nutrient solution of Hoagland and Arnon as a base solution (pH 7.5), containing different iron treatments (0, 1, and 5 ppm as FeSO</span><sub>4</sub>·<span>7H</span><sub><span>2</span></sub><span>O) combined with potassium nutrition (0, 5, 10, and 50 ppm as K</span><sub><span>2</span></sub><span>SO</span><sub><span>4</span></sub><span>). After 30 days, the best interaction treatment was selected for further experiment including 5.0 ppm Fe as FeSO</span><sub>4</sub><sup>.</sup><span>7H</span><sub><span>2</span></sub><span>O and 50 ppm K as K</span><sub><span>2</span></sub><span>SO</span><sub><span>4</span></sub><span> in combination with 1</span><span> </span><span>×</span><span> </span><span><span>10<sup>-</sup></span><sup><span>5</span></sup><span> mole/liter of one </span></span><span>of </span><span>the following organic acids: Citric acid, Oxalic acid, Formic acid, Acetic acid, Propionic acid, Tartaric acid, Succinic acid, Fumaric acid, Malic acid, Glutamic acid, besides the free organic acid nutrient solution as a control. Results revealed that the interaction between 5.0 ppm Fe and 50 ppm K was the best interaction treatment for increasing biomass production and iron uptake of maize and pea seedlings under applied condition. Furthermore, exogenous application of organic acids improves uptake and translocation of nutrient such as iron, potassium and phosphorus by the maize and pea plants. In conclusion, potassium nutrition and exogenous organic acids have the potential to stimulate Fe-uptake of monocot and dicot plants and mediate iron-biofortified crops.</span>展开更多
基金supported by the National Key R&D Program of China(No.2018YFD0901105).
文摘Iron deficiency anemia(IDA)is a major global health problem.Tegillarca granosa has been considered as an excellent source of iron given its high content of iron-binding protein,ferritin.The aim of the present study was to determine the physicochemical properties,protein structures,and iron uptake of ferritin extracted from T.granosa,and to evaluate the potential impacts of chitosan glycosylation on these characteristics.Based on Box-Behnken design and response surface methodology,the optimal conditions for glycosylation included a ferritin/chitosan mass ratio of 4:1,a pH of 5.5,a reaction time of 10 min,and a reaction temperature of 50℃.Glycosylation caused decreased surface hydrophobicity and elevated water-holding capacity of ferritin due to the introduction of hydrophilic groups.Additionally,glycosylation improved antioxidant capacity of ferritin by 20.69%–189.66%,likely owing to the protons donated by saccharide moiety to terminate free radical chain reaction.The in vitro digestibility of ferritin was elevated by 22.56%–104.85%after glycosylation,which could be associated with lessβ-sheet content in secondary structure that made the glycosylated protein less resistant to enzymatic digestion.The results of the iron bioavailability in Caco-2 cells revealed that ferritin(78.85–231.77 ngmg^(−1))exhibited better iron bioavailability than FeSO4(51.48–114.37 ngmg^(−1))and the values were further elevated by glycosylation with chitosan(296.23–358.20 ngmg^(−1)),which may be related to the physicochemical properties of ferritin via glycosylation modification.These results provide a basis for the development of T.granosa derived ferritin and its glycosylated products,and can promote the utilization of aquatic resources.
基金funded by the HarvestPlus China(#8231)Xihua University programs(R0910507)the Key Laboratory of Food Biotechnology,Xihua University
文摘Abstract Objective To compare iron bioavailability (Fe BV) from ten selected kinds of Chinese wheat flours in order to provide scientific basis for further human trials and enable plant breeding programs to screen biofortified wheat cultivars. Methods An in vitro digestion/Caco-2 cell model was used to assess Fe BV of ten flour samples from six leading Chinese wheat cultivars and the stability of Fe BV in one cultivar was studied across three growing environments. Results Significant differences were observed in both Fe BV and Fe bioavailability per gram of food (Fe BVPG) among cultivars (P〈0.01) grown at the same location with the same flour extraction rate. Zhongyou 9507 and Jingdong 8 had Fe BV 37%-54% and Fe BVP(3 103%-154% higher than the reference control. In the Anyang environment, Zhongyou 9507 had a higher wheat flour-Fe level and Fe BVPG. Differences in Fe BV were detected in cultivars with different flour extraction rates. Conclusion Zhongyou 9507 and Jingdong 8 were identified as the most promising cultivars for further evaluation of efficacy by using human subjects. The growing environments had no effect on Fe BV, but did have a significant effect on Fe BVPG. Fe bioavailabilities in low-extraction (40%) flours were higher than those in high-extraction (78%) flours.
文摘Biofortification of commonly eaten staple food crops with essential mineral micronutrients is a potential sustainable solution to global micronutrient malnutrition. Because phytic acid (PA;1,2,3,4,5,6-hexakis myo-inositol) reduces mineral micronutrient bioavailability, reduction of PA levels could increase the bioavailability of biofortified iron (Fe), zinc (Zn), calcium (Ca), and magnesium (Mg). PA is viewed as an anti-nutrient, yet PA and other inositol phosphates have also demonstrated positive health benefits. Phytic acid analysis in the agricultural, food, and nutritional sciences is typically carried out by colorimetry and chromatographic techniques. In addition, advanced techniques such as nuclear magnetic resonance and synchrotron X-ray absorption spectroscopy have also been used in phytic acid analysis. The colorimetric analysis may overestimate PA levels and synchrotron X-ray absorption techniques may not detect very low levels of inositol phosphates. This short communication discusses the advantages and disadvantages of each widely used phytic acid analysis method, and suggests high performance anion exchange (HPAE) chromatography with conductivity detection (CD) based analysis can achieve greater accuracy for the identification and quantification of inositol phosphates. Accurate characterization and quantification of PA and inositol phosphates will inform PA reduction and biofortification efforts, allowing retention of the benefits of non-phytic inositol phosphates for both plants and humans.
基金supported by FOMIXCHIHUAHUA(CHIH-2010-C01-148114).
文摘The aim of this study was to evaluate the effect of iron biofortification on antioxidant response, yield and nutritional qualityof green bean (Phaseolus vulgaris L.) under greenhouse conditions. Fe was applied using two forms (FeSO4 and Fe-EDDHA) at four doses of application (0, 25, 50 and 100 μm) added under a hydroponic system, and were tested over a period of 40 days. The Fe content was assessed in seeds, as well as the activity of antioxidant enzymes, production of H2O2, yield and nutritional quality. The results being obtained indicated that the accumulation of Fe in bean seeds enhanced with the application of Fe-EDDHA at the dose of 25 μm. This demonstrated that low Fe application dose was enough to increase Fe levels in seeds of common bean. In addition, Fe-EDDHA application form at 50 μmol was the best treatment to improve crop yield. Respect to antioxidant system, chelated form of Fe (Fe-EDDHA) was more effective in the activation of antioxidant enzymes (CAT, SOD and GSH-PX), and a lower content of H2O2 in green bean seeds. Finally, to raise the Fe concentration in bean under biofortification program was a promising strategy in cropping systems in order to increase the ingestion of iron and antioxidant capacity in the general population and provided the benefits that this element offered in human health.
文摘Global efforts to address malnutrition and hidden hunger, particularly prevalent in low- and middle-income countries, have intensified, with a focus on enhancing the nutritional content of staple crops like rice. Despite serving as a staple for over half of the world's population, rice falls short in meeting daily nutritional requirements, especially for iron(Fe) and zinc(Zn). Genetic resources, such as wild rice species and specific rice varieties, offer promising avenues for enhancing Fe and Zn content. Additionally, molecular breeding approaches have identified key genes and loci associated with Fe and Zn accumulation in rice grains. This review explores the genetic resources and molecular mechanisms underlying Fe and Zn accumulation in rice grains. The functional genomics involved in Fe uptake, transport, and distribution in rice plants have revealed key genes such as OsFRO1, OsIRT1, and OsNAS3. Similarly, genes associated with Zn uptake and translocation, including OsZIP11 and OsNRAMP1, have been identified. Transgenic approaches, leveraging transporter gene families and genome editing technologies, offer promising avenues for enhancing Fe and Zn content in rice grains. Moreover, strategies for reducing phytic acid(PA) content, a known inhibitor of mineral bioavailability, have been explored, including the identification of low-PA mutants and natural variants. The integration of genomic information, including whole-genome resequencing and pan-genome analyses, provides valuable insights into the genetic basis of micronutrient traits and facilitates targeted breeding efforts. Functional genomics studies have elucidated the molecular mechanisms underlying Fe uptake and translocation in rice. Furthermore, transgenic and genome editing techniques have shown promise in enhancing Fe and Zn content in rice grains through the manipulation of key transporter genes. Overall, the integration of multi-omics approaches holds significant promise for addressing global malnutrition and hidden hunger by enhancing the nutritional quality of rice, thereby contributing to improved food and nutritional security worldwide.
文摘Vitamin A deficiency (VAD) is the world’s commonest cause of childhood blindness. More than half of these cases occur in developing countries. Animal sourced foods though good sources of vitamin A are too expensive for poor rural people. Crops biofortified with provitamin A offer a convenient and accessible source of vitamin A. The other micro-nutrient programs of fortification and supplementation require more expensive inputs. Biofortification programs have developed crops that are rich in provitamin A. These crops include: maize, golden rice, cassava and orange fleshed sweetpotato (OFSP). With exception of golden rice, the rest of the biofortified crops have received considerable acceptance among the communities. Both animal and human studies have shown that provitamin A from biofortified crops is highly bioavailable and have capacity to improve vitamin A status. After several years of research and promotion, it is time to fully commercialize provitamin A crops by encouraging farmers to start their large scale production and consumption.
基金the Researchers Supporting Project No.(RSP2023R410)King Saud University,Riyadh,Saudi ArabiaPunjab Agricultural Research Board,Pakistan for funding the Research Project PARB No.904.
文摘Deficiencies of essential vitamins,iron(Fe),and zinc(Zn)affect over one-half of the world’s population.A significant progress has been made to control micronutrient deficiencies through supplementation,but new approaches are needed,especially to reach the rural poor.Agronomic biofortification of pulses with Zn,Fe,and boron(B)offers a pragmatic solution to combat hidden hunger instead of food fortification and supplementation.Moreover,it also has positive effects on crop production as well.Therefore,we conducted three separate field experiments for two consecutive years to evaluate the impact of soil and foliar application of the aforementioned nutrients on the yield and seed biofortification of mungbean.Soil application of Zn at 0,4.125,8.25,Fe at 0,2.5,5.0 and B at 0,0.55,1.1 kg ha−1 was done in the first,second and third experiment,respectively.Foliar application in these experiments was done at 0.3%Zn,0.2%Fe and 0.1%B respectively one week after flowering initiation.Data revealed that soil-applied Zn,Fe and B at 8.25,5.0 and 1.1 kg ha−1,respectively,enhanced the grain yield of mungbean;however,this increase in yield was statistically similar to that recorded with Zn,Fe and B at 4.125,2.5 and 0.55 kg ha−1,respectively.Foliar application of these nutrients at flower initiation significantly enhanced the Zn contents by 28%and 31%,Fe contents by 80%and 78%,while B contents by 98%and 116%over control during 2019 and 2020,respectively.It was concluded from the results that soil application of Zn,Fe,and B enhanced the yield performance of mungbean;while significant improvements in seed Zn,Fe,and B contents were recorded with foliar application of these nutrients.
基金Project supported by the Natural Science Foundation of Anhui Province (No. 00023069) the Ecological Experiment Station of Red Soil, Chinese Academy of Sciences and the Knowledge Innovative Program of the Chinese Academy of Sciences (No. KZCX2-401).
文摘Releases of manganese and iron ions from an albic soil (Albic-Udic Luvisol), a yellow-red soil (Hap-Udic Ferrisol) and a yellow-brown soil (Arp-Udic Luvisol) induced by calcium salt addition and their bioavailability to pepper (Capsicum frutescens L.) were studied in a pot experiment. Addition of Ca(NO3)2 decreased soil pH and increased both exchangeable and DTPA (diethylenetriamine pentaacetic acid)-extractable Mn and Fe in soils. Meanwhile, total Mn accumulation in the shoots of Capsicum frutescens L. on the salt-treated soils increased significantly (P < 0.01) compared with the control, suggesting that salt addition to soil induced Mn toxicity in Capsicum frutescens L. Although exchangeable and DTPA-extractable Fe increased also in the salt-treated soils, Fe uptake by the shoots of Capsicum frutescens L. decreased. The effect of added salts in soils on dry matter weight of pepper varied with the soil characteristics, showing different buffer capacities of the soils for salt toxicity in an order of yellow-brown soil > albic soil > yellow-red soil. Fe/Mn ratio in shoots of Capsicum frutescens L. decreased with increasing salt addition for all the soils, which was ascribed to the antagonistic effect of Mn on Fe accumulation. The ratio of Fe/Mn in the tissue was a better indicator of the appearance of Mn toxicity symptoms than Mn concentration alone.
基金Financial supports from the National Natural Science Foundation of China (Grant No. 30700479), Research Fund for the Doctoral Program of Higher Education of China (Nos. 20090097110035 and 20110097110004), Research Fund of State Key Laboratory of Soil and Sustainable Agriculture, Nanjing Institute of Soil Science, Chinese Academy of Science (No. Y052010019) and National Undergraduate Student Innovational Research Training Program (No. 091030726) are greatly acknowledged. The authors would like to thank Professor William Hendershot of McGill University for the editing of this manuscript.
文摘Redox conditions in paddy soils may vary as they are submerged and drained during rice growth. This change may bring about reductive dissolution of iron (Fe) oxides and subsequent formation of secondary Fe-bearing minerals in rice paddies. The mobility and bioavailability of metal contaminants such as cadmium (Cd) in paddy soils are closely related to the chemical behaviors of Fe. Therefore, in this paper, advances in the study of paddy Fe redox transformations and their effects on Cd availability to rice are briefly reviewed. Current concepts presented in this review include the forms of Fe in paddy soils, the reactions involved in Fe oxidation-reduction, chemical factors affecting Fe redox processes, Cd availability to rice and the impacts of Fe transformation on Cd uptake and translocation in rice. Prospects for future research in this area are also discussed.
文摘Green leafy vegetables (GLVs) are a potential source of iron to combat iron deficiency in iron deficient population. The aim of this study was to determine the bioavailability of iron in seven species of leafy vegetables (Solanumscrabrun, Venonia amygdalina, Cucurbita maxima, Amarathus hybridus, Colococia esculenta, Solanum macrocarpon and Telfairia occidentalis) consumed in Bamenda, Cameroon. A survey was carried out in 70 households in Bamenda, Cameroon to determine methods of preparation of these green leafy vegetables. Iron, antinutrients and vitamin C levels were determined using standard methods and the bioavailability of iron was determined using an in vitro dialys ability method. The vegetables used for the study were cooked with the addition of tomatoes, peanuts, melon seeds and soybean seeds. The loss of iron in GLVs was as a result of dilution caused by addition of the principal ingredients. The V. amygdalina cooked with soybean contained the highest level of iron (128.28 mg/100g). The S. scrabrum cooked with tomatoes had the highest Total phenolic coumponds of 0.91 g/100g;the C. esculenta recorded the highest with values ranging between 0.14 - 0.35 g/100g;the C. maxima cooked with soybean recorded the highest oxalate level (6.46 g/100g);and the vegetables cooked with melon seeds recording the highest in phytatelevels (70 - 1.63 g/100g). Vitamin C levels were highest in the S. macrocarpon cooked with tomatoes (199.96 mg/100g). Iron bioavailability was highest in A. hybridus cooked with tomatoes (28.09%). The iron bioavailability negatively correlated with phytates and positively with vitamin C. GLV consumed in Bamenda are good sources of iron whose bioavailability can be improved by using tomatoes in cooking.
基金Project supported by the Danish Agency for Science Technology andInnovation, Copenhagen,Denmark and HarvestPlus
文摘Phytic acid (PA) is the primary storage compound of phosphorus in seeds accounting for up to 80% of the total seed phosphorus and contributing as much as 1.5% to the seed dry weight. The negatively charged phosphate in PA strongly binds to metallic cations of Ca, Fe, K, Mg, Mn and Zn making them insoluble and thus unavailable as nutritional factors. Phytate mainly accumulates in protein storage vacuoles as globoids, predominantly located in the aleurone layer (wheat, barley and rice) or in the embryo (maize). During germination, phytate is hydrolysed by endogenous phytase(s) and other phosphatases to release phosphate, inositol and micronutrients to support the emerging seedling. PA and its derivatives are also implicated in RNA export, DNA repair, signalling, endocytosis and cell vesicular trafficking. Our recent studies on purification of phytate globoids, their mineral composition and dephytinization by wheat phytase will be discussed. Biochemical data for purified and characterized phytases isolated from more than 23 plant species are presented, the dephosphorylation pathways of phytic acid by different classes of phytases are compared, and the application of phytase in food and feed is discussed.
文摘Iron deficiency is prevalent among endurance athletes, particularly females. Low iron may compromise oxygen delivery and physical performance. Vegetarianism, desire for convenience, and perceived health risks associated with red meat contribute to low bioavailable iron intakes. The purpose of this study was to examine if lean beef supplementation would maintain iron status, improve body composition and increase performance of distance runners after 8 weeks. Twenty-eight (14 female) Division-I cross-country runners were stratified by iron status, use of iron supplements, and gender, and randomized into a control (n = 14) and intervention group. All participants maintained their typical diet and consumed a daily multivitamin, while the intervention group consumed 9 ounces of lean beef weekly. Dietary intake (total iron, heme-iron, protein, zinc), body composition, VO2max, and iron status (hemoglobin, hematocrit, serum iron, serum ferritin, total iron binding capacity [TIBC]) were measured at baseline and post-intervention. The intervention group had greater intakes of total and heme-iron. There were no group differences in amino acids, protein, or calories. Both groups had a significant body fat increase and lean mass decease over time. There was a significant VO2max increase over time in both groups. There were no group differences due to the intervention in serum ferritin, hemoglobin, serum iron, and TIBC. There was a significant difference in hematocrit between groups as a result of the intervention. In conclusion, increasing bioavailable iron from red meat may have effects on body composition and maintenance of blood iron markers;however, its direct impact on performance among endurance athletes is unclear.
文摘Iron (Fe) is a vital element for the survival and proliferation of all plants;therefore, Fe-biofortification by the application of chemical and organic fertilizers is being as an effective approach to fight hidden hunger retards the growth and development of crop plants. Two experiments were carried out to investigate the effect of potassium and exogenous organic acids on iron uptake by two different plants<span>:</span><span> one is monocotyledon</span><span>,</span><span><span> maize (<i></i></span><i><i><span>Zea mays</span></i><span></span></i> L.) and the second is dicotolydon pea (<i></i></span><i><i><span>Pisum sativum</span></i></i><span> L.) grown under controlled conditions. The seedlings were grown in sand culture in a greenhouse experiment and irrigated with one-tenth strength modified nutrient solution of Hoagland and Arnon as a base solution (pH 7.5), containing different iron treatments (0, 1, and 5 ppm as FeSO</span><sub>4</sub>·<span>7H</span><sub><span>2</span></sub><span>O) combined with potassium nutrition (0, 5, 10, and 50 ppm as K</span><sub><span>2</span></sub><span>SO</span><sub><span>4</span></sub><span>). After 30 days, the best interaction treatment was selected for further experiment including 5.0 ppm Fe as FeSO</span><sub>4</sub><sup>.</sup><span>7H</span><sub><span>2</span></sub><span>O and 50 ppm K as K</span><sub><span>2</span></sub><span>SO</span><sub><span>4</span></sub><span> in combination with 1</span><span> </span><span>×</span><span> </span><span><span>10<sup>-</sup></span><sup><span>5</span></sup><span> mole/liter of one </span></span><span>of </span><span>the following organic acids: Citric acid, Oxalic acid, Formic acid, Acetic acid, Propionic acid, Tartaric acid, Succinic acid, Fumaric acid, Malic acid, Glutamic acid, besides the free organic acid nutrient solution as a control. Results revealed that the interaction between 5.0 ppm Fe and 50 ppm K was the best interaction treatment for increasing biomass production and iron uptake of maize and pea seedlings under applied condition. Furthermore, exogenous application of organic acids improves uptake and translocation of nutrient such as iron, potassium and phosphorus by the maize and pea plants. In conclusion, potassium nutrition and exogenous organic acids have the potential to stimulate Fe-uptake of monocot and dicot plants and mediate iron-biofortified crops.</span>