Among the numerous transition metal catalysts,manganese-based compounds are considered as promising peroxymonosulfate(PMS)catalysts due to their low cost and environmental friendliness,such as cryptomelane manganese o...Among the numerous transition metal catalysts,manganese-based compounds are considered as promising peroxymonosulfate(PMS)catalysts due to their low cost and environmental friendliness,such as cryptomelane manganese oxide(K_(2-x)Mn_(8)O_(16):abbreviation KMnO).However,the limited catalytic performance of KMnO limits its practical application.In this work,iron-doped KMnO(Fe-KMnO)was prepared by one-step hydrothermal method to optimize its catalytic performance.Compared with KMnO/PMS system,Fe-KMnO/PMS system possessed more excellent removal efficiency of tetracycline(TC).Meanwhile,the Fe-KMnO/PMS system also exhibited good practical application potential and excellent stability.The mechanism of Fe-KMnO activation of PMS was further analyzed in detail.It was found that Fe participated in the redox of high-valent Mn,which promoted the activation of PMS.Moreover,The Fe site as an adsorption site enhanced the TC enrichment ability of the catalyst,reducing the mass transfer resistance and further enhancing the TC removal ability of Fe-KMnO/PMS system.This work not only provides an excellent PMS catalyst,but also offers new insights into the mechanism of PMS activation by bimetallic manganese-based catalysts.展开更多
Iron-doped titania nanoparticles exhibit a higher photocatalytic activity than pure TiO_2 for the degradation of nitrite. The optimum Fe-doped content in terms of activity is approximately 0.5%. The increase in photoa...Iron-doped titania nanoparticles exhibit a higher photocatalytic activity than pure TiO_2 for the degradation of nitrite. The optimum Fe-doped content in terms of activity is approximately 0.5%. The increase in photoactivity is probably due to the higher adsorption and the inhibition of electron-hole recombination. The photocatalytic oxidation reaction of nitrite over the Fe-doped TiO_2 catalyst follows zero-order kinetics, which is different from that over pure TiO_2. The reaction rate decreases linearly with the increase of the pH of the solution.展开更多
Thispaperisconcerned withthe preparation ofcerium doped yttrium iron garnet which areknown to be an oxide withlarge magneto opticaleffect. Usingtheimproved flux method wesuccessfully grew the bulksinglecrystalsofiron...Thispaperisconcerned withthe preparation ofcerium doped yttrium iron garnet which areknown to be an oxide withlarge magneto opticaleffect. Usingtheimproved flux method wesuccessfully grew the bulksinglecrystalsofiron garnet doped by Ce 3 + ions with maximum substitution upto0 349. Here weinvestigatedthedifferentcomposition ofsolution for maxi mum Ce3 + substitution. Thespectra ofthe Faraday rotation andtheoptical absorption were measured inthenearinfrared region fordifferentCe3 + ionsdopediron garnets. The Cesub stitution prominentlyenhancesthe Faradayeffect,andthe Yb and Euionssubstitutefor Yinthe dodecahedralsitesof YIGcanincreasetheconcentration of Ce3 + ions, depresstheforma tion of nonmagnetic Ce4 + ionsbythechargecompensation.展开更多
Fe-doped ZrO2 compounds were prepared by a co-precipitation method.The compounds were characterized by X-ray diffraction,N2 adsorption-desorption,ultraviolet diffuse reflectance infrared Fourier transform spectroscopy...Fe-doped ZrO2 compounds were prepared by a co-precipitation method.The compounds were characterized by X-ray diffraction,N2 adsorption-desorption,ultraviolet diffuse reflectance infrared Fourier transform spectroscopy,scanning electron microscopy-energy-dispersive X-ray spectroscopy,transmission electron microscopy,NH3 temperature-programmed desorption,X-ray photoelectron spectroscopy,and in situ Fourier transform infrared spectroscopy.The incorporation of Fe into ZrO2 lattice favored and effectively stabilized the formation of purely ZrO2 tetragonal phase.Subsequently,the catalytic activity of the Fe-doped ZrO2 compounds was evaluated toward vapor phase methylation of phenol.The catalytic activity was governed by Fe content and related to the Lewis acidity of the prepared catalyst.展开更多
Pure TiO2 thin films and iron doped TiO2 thin films on glass substrate were prepared by sol-gel method, and characterized by X-ray diffractometer (XRD), thermo-gravimetric analysis (TG-DSC), high resolution transm...Pure TiO2 thin films and iron doped TiO2 thin films on glass substrate were prepared by sol-gel method, and characterized by X-ray diffractometer (XRD), thermo-gravimetric analysis (TG-DSC), high resolution transmission electron microscope (HRTEM), scanning electron microscope (SEM) and UV-Vis spectroscopy, respectively. The experimental results show that the pure TiO2 thin films and iron doped TiO2 thin films can destroy most of the escherichia coli and bacillus subtillis under the irradiation of 365 nm UV-light. However, the iron doped TiO2 thin film is a better photocatalyst than pure TiO2 thin film. The ultrastructural studies provide direct evidences for understanding the bactericidal mechanism of the TiO2 photocatalyst.展开更多
Developing efficient water-splitting electrocatalysts, particularly for the anodic oxygen evolution reaction (OER), is an important challenge in energy conversion technologies. In this study, we report the developme...Developing efficient water-splitting electrocatalysts, particularly for the anodic oxygen evolution reaction (OER), is an important challenge in energy conversion technologies. In this study, we report the development of iron-doped nickel disulfide nanoarray on Ti mesh (Fe0.1-NiS2 NA/Ti) via the sulfidation of its nickel-iron-layered double hydroxide precursor (NiFe-LDH NAFFi). As a three-dimensional OER anode, Fe0.1NiS2 NA/Ti exhibits remarkable activity and stability in 1.0 M KOH, with the requirement of a low overpotential of 231 mV to achieve 100 mA·cm^-2. In addition, it exhibits excellent activity and durability in 30 wt.% KOH. Notably, this electrode is also efficient for the cathodic hydrogen evolution reaction under alkaline conditions.展开更多
Ordered mesoporous Fe/TiO2 was prepared by an evaporation-induced self-assembly method. The iron ions were in situ embedded in the pore wall of the TiO2 framework. The catalyst has excellent light-assisted Fenton cata...Ordered mesoporous Fe/TiO2 was prepared by an evaporation-induced self-assembly method. The iron ions were in situ embedded in the pore wall of the TiO2 framework. The catalyst has excellent light-assisted Fenton catalytic performance under UV and visible light irradiation. X-ray diffraction and transmission electron microscopy results showed that the TiO2 samples have an ordered two-dimensional hexagonal pore structure and an anatase phase structure with high crystallinity. The ordered pore structure of the TiO2 photocatalyst with a large specific surface area is beneficial to mass transfer and light harvesting. Furthermore, iron ions can be controlled by embedding them into the TiO2 framework to prevent iron ion loss and inactivation. After five cycles, the reaction rate of the ordered mesoporous Fe/TiO2 remained unchanged, indicating that the material has stable performance and broad application prospects for the purification of environmental pollutants.展开更多
基金supported by the National Natural Science Foundation of China (21806115)Sichuan Science and Technology Program (2020YJ0149)+1 种基金the Power Construction of China (P42819,DJ-ZDXM-2019-42)the Supported by Sichuan Science and Technology Program (2021ZDZX0012)。
文摘Among the numerous transition metal catalysts,manganese-based compounds are considered as promising peroxymonosulfate(PMS)catalysts due to their low cost and environmental friendliness,such as cryptomelane manganese oxide(K_(2-x)Mn_(8)O_(16):abbreviation KMnO).However,the limited catalytic performance of KMnO limits its practical application.In this work,iron-doped KMnO(Fe-KMnO)was prepared by one-step hydrothermal method to optimize its catalytic performance.Compared with KMnO/PMS system,Fe-KMnO/PMS system possessed more excellent removal efficiency of tetracycline(TC).Meanwhile,the Fe-KMnO/PMS system also exhibited good practical application potential and excellent stability.The mechanism of Fe-KMnO activation of PMS was further analyzed in detail.It was found that Fe participated in the redox of high-valent Mn,which promoted the activation of PMS.Moreover,The Fe site as an adsorption site enhanced the TC enrichment ability of the catalyst,reducing the mass transfer resistance and further enhancing the TC removal ability of Fe-KMnO/PMS system.This work not only provides an excellent PMS catalyst,but also offers new insights into the mechanism of PMS activation by bimetallic manganese-based catalysts.
基金the National Natural Science Foundation of China.
文摘Iron-doped titania nanoparticles exhibit a higher photocatalytic activity than pure TiO_2 for the degradation of nitrite. The optimum Fe-doped content in terms of activity is approximately 0.5%. The increase in photoactivity is probably due to the higher adsorption and the inhibition of electron-hole recombination. The photocatalytic oxidation reaction of nitrite over the Fe-doped TiO_2 catalyst follows zero-order kinetics, which is different from that over pure TiO_2. The reaction rate decreases linearly with the increase of the pH of the solution.
文摘Thispaperisconcerned withthe preparation ofcerium doped yttrium iron garnet which areknown to be an oxide withlarge magneto opticaleffect. Usingtheimproved flux method wesuccessfully grew the bulksinglecrystalsofiron garnet doped by Ce 3 + ions with maximum substitution upto0 349. Here weinvestigatedthedifferentcomposition ofsolution for maxi mum Ce3 + substitution. Thespectra ofthe Faraday rotation andtheoptical absorption were measured inthenearinfrared region fordifferentCe3 + ionsdopediron garnets. The Cesub stitution prominentlyenhancesthe Faradayeffect,andthe Yb and Euionssubstitutefor Yinthe dodecahedralsitesof YIGcanincreasetheconcentration of Ce3 + ions, depresstheforma tion of nonmagnetic Ce4 + ionsbythechargecompensation.
文摘Fe-doped ZrO2 compounds were prepared by a co-precipitation method.The compounds were characterized by X-ray diffraction,N2 adsorption-desorption,ultraviolet diffuse reflectance infrared Fourier transform spectroscopy,scanning electron microscopy-energy-dispersive X-ray spectroscopy,transmission electron microscopy,NH3 temperature-programmed desorption,X-ray photoelectron spectroscopy,and in situ Fourier transform infrared spectroscopy.The incorporation of Fe into ZrO2 lattice favored and effectively stabilized the formation of purely ZrO2 tetragonal phase.Subsequently,the catalytic activity of the Fe-doped ZrO2 compounds was evaluated toward vapor phase methylation of phenol.The catalytic activity was governed by Fe content and related to the Lewis acidity of the prepared catalyst.
基金the National"973"Plan Research Project(No.2004CB619204)Educational Ministry Scientific and Technological Research Key Project(No.02052)
文摘Pure TiO2 thin films and iron doped TiO2 thin films on glass substrate were prepared by sol-gel method, and characterized by X-ray diffractometer (XRD), thermo-gravimetric analysis (TG-DSC), high resolution transmission electron microscope (HRTEM), scanning electron microscope (SEM) and UV-Vis spectroscopy, respectively. The experimental results show that the pure TiO2 thin films and iron doped TiO2 thin films can destroy most of the escherichia coli and bacillus subtillis under the irradiation of 365 nm UV-light. However, the iron doped TiO2 thin film is a better photocatalyst than pure TiO2 thin film. The ultrastructural studies provide direct evidences for understanding the bactericidal mechanism of the TiO2 photocatalyst.
基金This work was supported by the National Natural Science Foundation of China (No. 21575137).
文摘Developing efficient water-splitting electrocatalysts, particularly for the anodic oxygen evolution reaction (OER), is an important challenge in energy conversion technologies. In this study, we report the development of iron-doped nickel disulfide nanoarray on Ti mesh (Fe0.1-NiS2 NA/Ti) via the sulfidation of its nickel-iron-layered double hydroxide precursor (NiFe-LDH NAFFi). As a three-dimensional OER anode, Fe0.1NiS2 NA/Ti exhibits remarkable activity and stability in 1.0 M KOH, with the requirement of a low overpotential of 231 mV to achieve 100 mA·cm^-2. In addition, it exhibits excellent activity and durability in 30 wt.% KOH. Notably, this electrode is also efficient for the cathodic hydrogen evolution reaction under alkaline conditions.
基金supported by the National Natural Science Foundation of China(21876114,21761142011,51572174)Shanghai Government(17SG44)+2 种基金International Joint Laboratory on Resource Chemistry(IJLRC)Ministry of Education of China(PCSIRT_IRT_16R49)supported by The Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning and Shuguang Research Program of Shanghai Education Committee~~
文摘Ordered mesoporous Fe/TiO2 was prepared by an evaporation-induced self-assembly method. The iron ions were in situ embedded in the pore wall of the TiO2 framework. The catalyst has excellent light-assisted Fenton catalytic performance under UV and visible light irradiation. X-ray diffraction and transmission electron microscopy results showed that the TiO2 samples have an ordered two-dimensional hexagonal pore structure and an anatase phase structure with high crystallinity. The ordered pore structure of the TiO2 photocatalyst with a large specific surface area is beneficial to mass transfer and light harvesting. Furthermore, iron ions can be controlled by embedding them into the TiO2 framework to prevent iron ion loss and inactivation. After five cycles, the reaction rate of the ordered mesoporous Fe/TiO2 remained unchanged, indicating that the material has stable performance and broad application prospects for the purification of environmental pollutants.