期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Effect of safety valve types on the gas venting behavior and thermal runaway hazard severity of large-format prismatic lithium iron phosphate batteries 被引量:2
1
作者 Zhuangzhuang Jia Yuanyuan Min +5 位作者 Peng Qin Wenxin Mei Xiangdong Meng Kaiqiang Jin Jinhua Sun Qingsong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期195-207,I0006,共14页
The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the ... The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the TR hazard severity of LIBs,are not known.In this paper,the TR and gas venting behavior of three 100 A h lithium iron phosphate(LFP)batteries with different safety valves are investigated under overheating.Compared to previous studies,the main contribution of this work is in studying and evaluating the effect of gas venting behavior and TR hazard severity of LFP batteries with three safety valve types.Two significant results are obtained:(Ⅰ)the safety valve type dominates over gas venting pressure of battery during safety venting,the maximum gas venting pressure of LFP batteries with a round safety valve is 3320 Pa,which is one order of magnitude higher than other batteries with oval or cavity safety valve;(Ⅱ)the LFP battery with oval safety valve has the lowest TR hazard as shown by the TR hazard assessment model based on gray-fuzzy analytic hierarchy process.This study reveals the effect of safety valve type on TR and gas venting,providing a clear direction for the safety valve design. 展开更多
关键词 Lithium iron phosphate battery Safety valve Thermal runaway Gas venting behavior Thermal runaway hazard severity Gray-fuzzy analytic hierarchy process
下载PDF
Study on Preparation of Cathode Material of Lithium Iron Phosphate Battery by Self-Craning Thermal Method
2
作者 Maosen Pan Yali Ge Bo-hao Lin 《Journal of Electronic Research and Application》 2024年第6期194-199,共6页
The cathode material of carbon-coated lithium iron phosphate(LiFePO4/C)lithium-ion battery was synthesized by a self-winding thermal method.The material was characterized by X-ray diffraction(XRD)and scanning electron... The cathode material of carbon-coated lithium iron phosphate(LiFePO4/C)lithium-ion battery was synthesized by a self-winding thermal method.The material was characterized by X-ray diffraction(XRD)and scanning electron microscope(SEM).The electrochemical properties of LiFePO4/C materials were measured by the constant current charge-discharge method and cyclic voltammetry.The results showed that the LiFePO4/C material prepared by the self-propagating heat method has a typical olivine crystal structure,and the product had fine grains and good electrochemical properties.The optimal sintering temperature is 700℃,the sintering time is 24 h,the particle size of the lithium iron phosphate material is about 300 nm,and the maximum discharge capacity is 121 mAh/g at 0.1 C rate. 展开更多
关键词 BATTERY Cathode material Lithium iron phosphate Autocratic heat method
下载PDF
Process for recycle of spent lithium iron phosphate battery via a selective leaching-precipitation method 被引量:23
3
作者 LI Hao-yu YE Hua +1 位作者 SUN Ming-cang CHEN Wu-jie 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第11期3239-3248,共10页
Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical prec... Applying spent lithium iron phosphate battery as raw material,valuable metals in spent lithium ion battery were effectively recovered through separation of active material,selective leaching,and stepwise chemical precipitation.Using stoichiometric Na2S2O8 as an oxidant and adding low-concentration H2SO4 as a leaching agent was proposed.This route was totally different from the conventional methods of dissolving all of the elements into solution by using excess mineral acid.When experiments were done under optimal conditions(Na2S2O8-to-Li molar ratio 0.45,0.30 mol/L H2SO4,60℃,1.5 h),leaching efficiencies of 97.53% for Li^+,1.39%for Fe^3+,and 2.58% for PO4^3−were recorded.FePO4 was then recovered by a precipitation method from the leachate while maintaining the pH at 2.0.The mother liquor was concentrated and maintained at a temperature of approximately 100℃,and then a saturated sodium carbonate solution was added to precipitate Li2CO3.The lithium recovery yield was close to 80%. 展开更多
关键词 lithium iron phosphate batteries selective leaching RECOVERY sodium persulfate lithium carbonate
下载PDF
Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids 被引量:12
4
作者 XURen-kou ZHUYong-guan DavidChittleborough 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第1期5-8,共4页
Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phospha... Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by low-molecular-weight organic acids. Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the p K _a values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was not correlated with p K _a. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate. 展开更多
关键词 organic acid phosphate release RHIZOSPHERE rock phosphate iron phosphate
下载PDF
Effects of different iron sources on the performance of LiFePO_4/C composite cathode materials 被引量:6
5
作者 Fei Gao Zhiyuan Tang Jianjun Xue 《Journal of University of Science and Technology Beijing》 CSCD 2008年第6期802-807,共6页
Olivine LiFePO4/C composite cathode materials were synthesized by a solid state method in N2 + 5vol% H2 atmosphere. The effects of different iron sources, including Fe(OH)3 and FeC2O4·2H2O, on the performance ... Olivine LiFePO4/C composite cathode materials were synthesized by a solid state method in N2 + 5vol% H2 atmosphere. The effects of different iron sources, including Fe(OH)3 and FeC2O4·2H2O, on the performance of as-synthesized cathode materials were investigated and the causes were also analyzed. The crystal structure, the morphology, and the electrochemical performance of the prepared samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), laser particle-size distribution measurement, and other electrochemical techniques. The results demonstrate that the LiFePO4/C materials obtained from Fe(OH)3 at 800℃ and FeC2O4·2H2O at 700℃ have the similar electrochemical performances. The initial discharge capacities of LiFePO4/C synthesized from Fe(OH)3 and FeC2O4·2H2O are 134.5 mAh.g^-1 and 137.4 mAh.g^-1 at the C/5 rate, respectively. How- ever, the tap density of the LiFePO4/C materials obtained from Fe(OH)3 are higher, which is significant for the improvement of the capacity of the battery. 展开更多
关键词 iron sources lithium iron phosphate cathode material solid state method
下载PDF
AN IRREVERSIBILITY PHENOMENA IN ELECTRICAL CONDUCTIVITY OF THE MELTS IN SODIUM IRON PHOSPHATE SYSTEM 被引量:2
6
作者 F. Y. Chen1)and E. D. Delber2) 1) State Key Laboratory of Solidification Process,Northwestern Polytechnic University ,Xi’an 710072 ,China 2) Department of Ceramics Engineering , University of Missouri Rolla, Rolla, Mo 654301 , USA 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第4期633-636,共4页
Theelectricalresistivityofsodium iron phosphate melts wasinvestigated asa functionoftem peratureand composition. Irreversibility was found in thetemperature dependent electricalresistivityinthe melts withlow Na2 Ocon... Theelectricalresistivityofsodium iron phosphate melts wasinvestigated asa functionoftem peratureand composition. Irreversibility was found in thetemperature dependent electricalresistivityinthe melts withlow Na2 Ocontentduringtheheating andcoolingcycle. Theirre versibility wasreduced withincreasing Na2 Ocontent. Theelectricalresistivity tendedto de creaseslightly withtime. Theelectricalconduction ofthe meltscontainingsimulatedindustry waste wassimilartothatofthe melts withsimilarsodacontent. Thetemperature dependent electricalresistivity and activation energy ofthese melts was discussed using the Motttheory and wascorrelatedtothe Fe(II) contentinthe melts 展开更多
关键词 IRREVERSIBILITY electricalresistivity iron phosphate melts
下载PDF
Contribntion of Iron Phosphate in Calcareous Paddy Soils to Phosphorus Nntrition of Rice Plant
7
作者 GUO ZHI-FEN TU SHU-XIN +1 位作者 LI XIAO-HUA PAN YONG and ZHANG YI-CHUN(Institute of Atomic Energy in Agricultural Use, Hubei Academy of Agricultrual Sciences, Wuhan 450064( China) 《Pedosphere》 SCIE CAS CSCD 1995年第3期275-281,共7页
A study was carried out on contribution of iron pbosphate to phosphorus nutrition of rice plant nnderwaterlogged and moist conditions, respectively, by use of synthetic Fe ̄(32) PO_4 . nH_2O, tagging directly the iron... A study was carried out on contribution of iron pbosphate to phosphorus nutrition of rice plant nnderwaterlogged and moist conditions, respectively, by use of synthetic Fe ̄(32) PO_4 . nH_2O, tagging directly the ironphophate in calcareous paddy soils.Results showed that under waterlogged condition, similar to iron phosphate in acidic paddy soils, that incalcareous paddy soils was an important source of phosphorus to rice plant, and the amount of phosphorusoriginated from it generally constituted 30-65% of the total phosphorus absorbed by rice plant. 展开更多
关键词 calcareous soil iron phosphate phosphorus nutrition RICE
下载PDF
Hydrometallurgical recovery of lithium carbonate and iron phosphate from blended cathode materials of spent lithium-ion battery
8
作者 Shao-Le Song Run-Qing Liu +3 位作者 Miao-Miao Sun Ai-Gang Zhen Fan-Zhen Kong Yue Yang 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1275-1287,共13页
The recycling of cathode materials from spent lithium-ion battery has attracted extensive attention,but few research have focused on spent blended cathode materials.In reality,the blended materials of lithium iron pho... The recycling of cathode materials from spent lithium-ion battery has attracted extensive attention,but few research have focused on spent blended cathode materials.In reality,the blended materials of lithium iron phosphate and ternary are widely used in electric vehicles,so it is critical to design an effective recycling technique.In this study,an efficient method for recovering Li and Fe from the blended cathode materials of spent LiFePO_(4)and LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)batteries is proposed.First,87%A1 was removed by alkali leaching.Then,91.65%Li,72.08%Ni,64.6%Co and 71.66%Mn were further separated by selective leaching with H_(2)SO_(4)and H_(2)O_(2).Li,Ni,Co and Mn in solution were recovered in the form of Li_(2)CO_(3)and hydroxide respectively.Subsequently,98.38%Fe was leached from the residue by two stage process,and it is recovered as FePO_(4)·2H_(2)O with a purity of 99.5%by precipitation.Fe and P were present in FePO_(4)·2H_(2)O in amounts of 28.34%and 15.98%,respectively.Additionally,the drift and control of various components were discussed,and cost-benefit analysis was used to assess the feasibility of potential application. 展开更多
关键词 Spent lithium-ion battery Blended cathode materials RECOVERY Lithium carbonate iron phosphate
原文传递
Thermodynamics analysis of LiFePO_4 pecipitation from Li-Fe(Ⅱ)-P-H_2O system at 298 K 被引量:2
9
作者 何利华 赵中伟 +2 位作者 刘旭恒 陈爱良 司秀芬 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1766-1770,共5页
Thermodynamics of the precipitation from Li-Fe(II)-P-H2O system at 298 K was investigated.The results demonstrate that LiFePO4 can be formed at room temperature under pH value of 0-11.3,and the impurities Li3PO4 and... Thermodynamics of the precipitation from Li-Fe(II)-P-H2O system at 298 K was investigated.The results demonstrate that LiFePO4 can be formed at room temperature under pH value of 0-11.3,and the impurities Li3PO4 and Fe(OH)2 will be yielded at pH value above 11.3 and 12.9,respectively.The optimum pH value for LiFePO4 precipitation is 8-10.5.Considering the low rate of phase transformation kinetics,metastable Li-Fe(II)-P-H2O system was also studied.The results indicate that equimolar ratio of co-precipitation precursor Fe3(PO4)2.8H2O and Li3PO4 cannot be obtained at the initial molar ratio 1:1:1 and 1:1:3 of Li:Fe:P.In contrast,equimolar ratio of the co-precipitation precursor can be yielded by adjusting the pH value to 7-9.2,matching the molar ratio 3:1:1 of Li:Fe:P,meaning that Li+-excess is one of the essential conditions for LiFePO4 preparation by co-precipitation method. 展开更多
关键词 lithium iron phosphate lithium ion batteries Li-Fe(Ⅱ)-P-H2O system thermodynamics CO-PRECIPITATION
下载PDF
Synthesis and Electrochemical Property of Flowerlike LiFePO4 by Poly(ethylene glycol)-assisted Hydrothermal Process 被引量:1
10
作者 郭鑫 张遥骋 项宏发 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第3期337-340,I0004,共5页
Flowerlike LiFePO4 particles self-assembled by plate-like crystals with about 200 nm thickness were prepared by the poly(ethylene glycol)-assisted hydrothermal synthesis. Poly(ethylene glycol) in the hydrothermal ... Flowerlike LiFePO4 particles self-assembled by plate-like crystals with about 200 nm thickness were prepared by the poly(ethylene glycol)-assisted hydrothermal synthesis. Poly(ethylene glycol) in the hydrothermal system played an important role in reducing the thickness of the plate-like LiFePO4 crystals as a co-solvent and forming the flower- like structure as a soft template. The flowerlike LiFePO4 exhibits high discharge capacity of 140 mAh/g and shows quite good cycling performance in the lithium-ion batteries. Con- sidering that the conductive carbon in the obtained LiFePO4 is negligible, the excellent cell performance suggests that the flowerlike LiFePO4 is a promising cathode material for the lithium-ion batteries. 展开更多
关键词 Lithium iron phosphate Hydrothermal synthesis Li-ion battery
下载PDF
LiFePO_4 doped with magnesium prepared by hydrothermal reaction in glucose solution 被引量:10
11
作者 Xiu Qin Ou Guang Chuan Liang Jin Sheng Liang Sheng Zhao Xu Xia Zhao 《Chinese Chemical Letters》 SCIE CAS CSCD 2008年第3期345-349,共5页
Lithium iron phosphate (LiFePO4) doped with magnesium was hydrothermally synthesized from commercial LiOH, FeSO4, H3PO4 and MgSO4 with glucose as carbon precursor in aqueous solution. The samples were characterized ... Lithium iron phosphate (LiFePO4) doped with magnesium was hydrothermally synthesized from commercial LiOH, FeSO4, H3PO4 and MgSO4 with glucose as carbon precursor in aqueous solution. The samples were characterized by X-ray powder diffraction, scanning electron microscopy and constant charge-discharge cycling. The results show that the synthesized powders have been in situ coated with carbon precursor produced from caramel reaction of glucose. At ambient temperature (28±2℃), the electrochemical performances of LiFePO4 prepared exhibit the high discharge capacity of 135 mAh g^-1 at 5C and good capacity retention of 98% over 90 cycles. The excellent electrochemical performances should be correlated with the intimate contact between carbon and LiFePO4 primary and secondary particles, resulting from the in situ formation of carbon precursor/carbon, leading to the increase in conductivity of LiFePO4. 展开更多
关键词 Lithium iron phosphate Mg doping Hydrothermal reaction GLUCOSE Carbon coated
下载PDF
Recovery and regeneration of LiFePO_(4)from spent lithium-ion batteries via a novel pretreatment process 被引量:14
12
作者 Cheng Yang Jia-liang Zhang +3 位作者 Qian-kun Jing Yu-bo Liu Yong-qiang Chen Cheng-yan Wang 《International Journal of Minerals,Metallurgy and Materials》 CSCD 2021年第9期1478-1487,共10页
The recycling of spent LiFePO_(4)batteries has received extensive attention due to its environmental impact and economic benefit.In the pretreatment process of spent LiFePO_(4)batteries,the separation of active materi... The recycling of spent LiFePO_(4)batteries has received extensive attention due to its environmental impact and economic benefit.In the pretreatment process of spent LiFePO_(4)batteries,the separation of active materials and current collectors determines the difficulty of the re-covery process and product quality.In this work,a facile and efficient pretreatment process is first proposed.After only freezing the electrode pieces and immersing them in boiling water,LiFePO_(4)materials were peeled from the Al foil.Then,after roasting under an inert atmosphere and sieving,all the cathode and anode active materials were easily and efficiently separated from the Al and Cu foils.The active materials were subjected to acid leaching,and the leaching solution was further used to prepare FePO_(4)and Li_(2)CO_(3).Finally,the battery-grade FePO_(4)and Li_(2)CO_(3)were used to re-synthesize LiFePO_(4)/C via the carbon thermal reduction method.The discharge capacities of re-synthesized LiFePO_(4)/C cathode were 144.2,139.0,133.2,125.5,and 110.5 mA·h·g−1 at rates of 0.1,0.5,1,2,and 5 C,which satisfies the requirement for middle-end LiFePO_(4)batteries.The whole process is environmental and has great potential for industrial-scale recycling of spent lithium-ion batteries. 展开更多
关键词 spent lithium iron phosphate batteries pretreating process RECOVERY REGENERATION cathode materials
下载PDF
Electrochemical performances of LiFePO_4/C composites prepared by molten salt method 被引量:4
13
作者 陈召勇 朱伟 +2 位作者 朱华丽 张建利 李奇峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第5期809-813,共5页
LiFePO4/C composites were synthesized by a molten salt (MS) method using the mixture of LiCl,LiOH and NaCl.The prepared LiFePO4/C composites are characterized by X-ray diffractometry (XRD),field emission scanning elec... LiFePO4/C composites were synthesized by a molten salt (MS) method using the mixture of LiCl,LiOH and NaCl.The prepared LiFePO4/C composites are characterized by X-ray diffractometry (XRD),field emission scanning electron microscopy (FESEM) and charge-discharge test.XRD patterns indicate that LiFePO4 prepared in the temperature range of 550-700 ℃ crystallizes well in an olivine-type structure.Through FESEM images,the sphere-like and homogeneous particles of 0.2 μm can be observed.The charge-discharge test shows that the materials prepared at 600 ℃ for 12 h have good electrochemical performance.At the rates of 0.2C (34 mA/g) and 0.5C,the discharge capacities are 144.6 and 122.3 mA·h/g,respectively,together with good cycle performances. 展开更多
关键词 lithium iron phosphate molten salt method cathode material Li-ion batteries
下载PDF
Doping Effects on Electronic Conductivity and Electrochemical Performance of LiFePO_4 被引量:2
14
作者 Jiezi Hu Jian Xie +4 位作者 Xinbing Zhao Hongming Yu Xin Zhou Gaoshao Cao Jiangping Tu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第3期405-409,共5页
Olivine-structured pure LIFePO4 and doped LI(M, Fe)PO4 (M=La, Ce, Nd, Mn, Co, Ni) have been synthesized by a solvothermal method. X-ray diffraction and field emission scanning electron microscopy analyses indicate... Olivine-structured pure LIFePO4 and doped LI(M, Fe)PO4 (M=La, Ce, Nd, Mn, Co, Ni) have been synthesized by a solvothermal method. X-ray diffraction and field emission scanning electron microscopy analyses indicate that the as-prepared LiFePO4 is well-crystallized nanopowders without any detectable impurity phases. The electronic conductivity of LiFePO4 is enhanced by around 1-3 orders by doping. It was found that doping alone is not sufficient for the high-rate performance of LiFePO4 and surface coating with such as carbon should be needed. The best dopant for LiFePO4 is Nd among those studied in the present work. Accordingly, doping with 1 mol fraction Nd leads to an increase in 70 mAh/g at 0.1 C for the hydrothermally synthesized sample and 50 mAh/g at 1.0 C after carbon-coating in comparison with the undoped samples. 展开更多
关键词 Lithium iron phosphate DOPING CONDUCTIVITY Hydrothermal synthesis
下载PDF
Composites of Graphene and LiFePO_4 as Cathode Materials for Lithium-Ion Battery:A Mini-review 被引量:2
15
作者 Haixia Wu Qinjiao Liu Shouwu Guo 《Nano-Micro Letters》 SCIE EI CAS 2014年第4期316-326,共11页
This mini-review highlights selectively the recent research progress in the composites of Li Fe PO4 and graphene. In particularly, the different fabrication protocols, and the electrochemical performance of the compos... This mini-review highlights selectively the recent research progress in the composites of Li Fe PO4 and graphene. In particularly, the different fabrication protocols, and the electrochemical performance of the composites are summarized in detail. The structural and morphology characters of graphene sheets that may affect the property of the composites are discussed briefly. The possible ongoing researches in area are speculated upon. 展开更多
关键词 Lithium iron phosphate GRAPHENE Composite Electrochemical property Lithium-ion battery
下载PDF
Response Surface Optimization for Process Parameters of LiFePO_4/C Preparation by Carbothermal Reduction Technology 被引量:2
16
作者 杨克迪 谭芳香 +2 位作者 王凡 龙云飞 文衍宣 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第4期793-802,共10页
A statistically based optimization strategy is used to optimize the carbothermal reduction technology for the synthesis of LiFePO4/C using LiOH,FePO4 and sucrose as raw materials.The experimental data for fitting the ... A statistically based optimization strategy is used to optimize the carbothermal reduction technology for the synthesis of LiFePO4/C using LiOH,FePO4 and sucrose as raw materials.The experimental data for fitting the response are collected by the central composite rotatable design(CCD).A second order model for the discharge ca-pacity of LiFePO4/C is expressed as a function of sintering temperature,sintering time and carbon content.The ef-fects of individual variables and their interactions are studied by a statistical analysis(ANOVA).The results show that the linear effects and the quadratic effects of sintering temperature,carbon content and the interactions among these variables are statistically significant,while those effects of sintering time are insignificant.Response surface plots for spatial representation of the model illustrate that the discharge capacity depends on sintering temperature and carbon content more than sintering time.The model obtained gives the optimized reaction parameters of sinter-ing temperature at 652.0 ℃,carbon content of 34.33 g?mol-1 and 8.48 h sintering time,corresponding to a dis-charge capacity of 150.8 mA·h·g-1.The confirmatory test with these optimum parameters gives the discharge ca-pacity of 147.2 and 105.1 mA·h·g-1 at 0.5 and 5 C,respectively. 展开更多
关键词 lithium ion battery cathode material lithium iron phosphate carbothermal reduction technology re-sponse surface methodology
下载PDF
Surfactant assisted solvothermal synthesis of LiFePO4 nanorods for lithium-ion batteries 被引量:1
17
作者 Yuan Gao Ke Chen +3 位作者 Hongmei Chen Xiaohua Hu Zihua Deng Zidong Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期564-568,共5页
Well-shaped and uniformly dispersed LiFePOnanorods with a length of 400–500 nm and a diameter of about 100 nm, are obtained with participation of a proper amount of anion surfactant sodium dodecyl sulfonate(SDS) wi... Well-shaped and uniformly dispersed LiFePOnanorods with a length of 400–500 nm and a diameter of about 100 nm, are obtained with participation of a proper amount of anion surfactant sodium dodecyl sulfonate(SDS) without any further heating as a post-treatment. The surfactant acts as a self-assembling supermolecular template, which stimulated the crystallization of LiFePOand directed the nanoparticles growing into nanorods between bilayers of surfactant(BOS). LiFePOnanorods with the reducing crystal size along the b axis shorten the diffusion distance of Liextraction/insertion, and thus improve the electrochemical properties of LiFePOnanorods. Such prepared LiFePOnanorods exhibited excellent specific capacity and high rate capability with discharge capacity of 151 mAh/g, 122 mAh/g and 95 mAh/g at 0.1C, 1 C and 5 C, respectively. Such excellent performance of LiFePOnanorods is supposed to be ascribed to the fast Lidiffusion velocity from reduced crystal size along the b axis and the well electrochemical conductivity. The structure, morphology and electrochemical performance of the samples were characterized by XRD, FE-SEM, HRTEM, charge/discharge tests, and EIS(electrochemical impedance spectra). 展开更多
关键词 Lithium iron phosphate Lithium-ion battery SURFACTANT NANORODS Solvothermal synthesis
下载PDF
Perspective on cycling stability of lithium-iron manganese phosphate for lithium-ion batteries 被引量:5
18
作者 Kun Zhang Zi-Xuan Li +5 位作者 Xiu Li Xi-Yong Chen Hong-Qun Tang Xin-Hua Liu Cai-Yun Wang Jian-Min Ma 《Rare Metals》 SCIE EI CAS CSCD 2023年第3期740-750,共11页
Lithium-iron manganese phosphates(LiFex Mn_(1-x)PO_(4),0.1<x<0.9)have the merits of high safety and high working voltage.However,they also face the challenges of insufficient conductivity and poor cycling stabil... Lithium-iron manganese phosphates(LiFex Mn_(1-x)PO_(4),0.1<x<0.9)have the merits of high safety and high working voltage.However,they also face the challenges of insufficient conductivity and poor cycling stability.Some progress has been achieved to solve these problems.Herein,we firstly summarized the influence of different electrolyte systems on the electrochemical performance of LiFexMn_(1-x)PO_(4),and then discussed the effect of element doping,lastly studied the influences of conductive layer coating and morphology control on the cycling stability.Finally,the prospects and challenges of developing high-cycling LiFexMn_(1-x)PO_(4) were proposed. 展开更多
关键词 Lithium iron manganese phosphate CATHODE Cycling stability Electrolyte modification DOPING Coating Controlled synthesis
原文传递
3D amorphous carbon and graphene co-modified LiFePO_4 composite derived from polyol process as electrode for high power lithium-ion batteries
19
作者 Guan Wu Ran Ran +4 位作者 Bote Zhao Yujing Sha Chao Su Yingke Zhou Zongping Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期363-375,共13页
Amorphous carbon and graphene co-modified LiFePO4 nanocomposite has been synthesized via a facile polyol process in connection with a following thermal treatment.Various characterization techniques,including XRD.Mossb... Amorphous carbon and graphene co-modified LiFePO4 nanocomposite has been synthesized via a facile polyol process in connection with a following thermal treatment.Various characterization techniques,including XRD.Mossbauer spectra,Raman spectra,SEM,TEM,BET,O2-TPO,galvano charge-discharge,CV and EIS were applied to investigate the phase composition,carbon content,morphological structure and electrochemical performance of the synthesized samples.The effect of introducing way of carbon sources on the properties and performance of LiFePO4/C/graphene composite was paid special attention.Under optimized synthetic conditions,highly crystalized olivine-type LiFePO4was successfully obtained with electron conductive Fe2P and FeP as the main impurity phases.SEM and TEM analyses demonstrated the graphene sheets were randomly distributed inside the sample to create an open structured LiFePO4 with respect to graphene,while the glucosederived carbon mainly coated over LiFeP04 particles which effectively connected the graphene sheets and LiFePO4 particles to result in a more efficient charge transfer process.As a result,favorable electrochemical performance was achieved.The performance of the amorphous carbon-graphene co-modified LiFePO4 was further progressively improved upon cycling in the first 200 cycles to reach a reversible specificcapacity as high as 97 mAh·g-1 at 10 C rate. 展开更多
关键词 cathode material lithium iron phosphate GRAPHENE amorphous carbon polyol process
下载PDF
Preparation and Electrochemical Performance of V2O3-C Dual-Layer Coated LiFePO4 by Carbothermic Reduction of V2O5
20
作者 You-liang Wei Hong-fa Xiang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2015年第3期331-337,I0002,共8页
The V2O3-C dual-layer coated LiFePO4 cathode materials with excellent rate capability and cycling stability were prepared by carbothermic reduction of V2O5. X-ray powder diffraction, elemental analyzer, high resolutio... The V2O3-C dual-layer coated LiFePO4 cathode materials with excellent rate capability and cycling stability were prepared by carbothermic reduction of V2O5. X-ray powder diffraction, elemental analyzer, high resolution transmission electron microscopy and Raman spectra revealed that the V2O3 phase co-existed with carbon in the coating layer of LiFePO4 particles and the carbon content reduced without graphitization degree changing after the carbothermic reduction of V205. The electrochemical measurement results indicated that small amounts of V203 improved rate capability and cycling stability at elevated temperature of LiFePO4/C cathode materials. The V203-C dual-layer coated LiFePO4 composite with lwt% vanadium oxide delivered an initial specific capacity of 167 mAh/g at 0.2 C and 129 mAh/g at 5 C as well as excellent cycling stability. Even at elevated temperature of 55 ℃, the specific capacity of 151 mAh/g was achieved at 1 C without capacity fading after 100 cycles. 展开更多
关键词 Lithium iron phosphate Vanadium oxide Carbon coating Li-ion battery
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部